Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136229538> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3136229538 endingPage "46836" @default.
- W3136229538 startingPage "46821" @default.
- W3136229538 abstract "One paramount challenge in multi-ion-sensing arises from ion interference that degrades the accuracy of sensor calibration. Machine learning models are here proposed to optimize such multivariate calibration. However, the acquisition of big experimental data is time and resource consuming in practice, necessitating new paradigms and efficient models for these data-limited frameworks. Therefore, a novel approach is presented in this work, where a multi-ion-sensing emulator is designed to explain the response of an ion-sensing array in a mixed-ion environment. A case study is performed emulating the concurrent monitoring of sodium, potassium, lithium, and lead ions, in a medium representative of sweat samples. These analytes are relevant examples of sweat ion-sensing applications for physiology, therapeutic drug monitoring, and heavy metal contamination. It is demonstrated that calibration datasets output by the emulator explain accurately the experimental response of polymeric solid-contact ion-selective electrodes, where root-mean-squared error of 1.37, 1.44, 1.78, 2 mV are obtained, respectively, for Na <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>+</sup> , K <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>+</sup> , Li <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>+</sup> , Pb <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2+</sup> sensor calibration in artificial sweat. Besides, synthetic datasets of custom size are generated to train, validate, and evaluate different types of multivariate regressors. A Multi-Output Support Vector Regressor (M-SVR) is proposed as a compact, accurate, robust, and efficient multivariate calibration model. It features 13.22% normalized root mean squares, and 20.29% mean root squares improvement compared to a simple linear regression model. It is an unbiased estimator for medium to large datasets, and its average generalization error is of 3.22%. Besides, M-SVR models have a lower computational complexity than single-output SVR or neural network models, making them a suitable solution for memory and energy-constrained edge devices used for continuous and real-time multi-ion monitoring." @default.
- W3136229538 created "2021-03-29" @default.
- W3136229538 creator A5050726140 @default.
- W3136229538 creator A5071261627 @default.
- W3136229538 creator A5072927296 @default.
- W3136229538 creator A5083841737 @default.
- W3136229538 date "2021-01-01" @default.
- W3136229538 modified "2023-10-03" @default.
- W3136229538 title "Multi-Ion-Sensing Emulator and Multivariate Calibration Optimization by Machine Learning Models" @default.
- W3136229538 cites W1977475892 @default.
- W3136229538 cites W1980864800 @default.
- W3136229538 cites W1994662226 @default.
- W3136229538 cites W2005716782 @default.
- W3136229538 cites W2009910109 @default.
- W3136229538 cites W2030109230 @default.
- W3136229538 cites W2043167036 @default.
- W3136229538 cites W2050387908 @default.
- W3136229538 cites W2055248777 @default.
- W3136229538 cites W2066966270 @default.
- W3136229538 cites W2070858054 @default.
- W3136229538 cites W2073503722 @default.
- W3136229538 cites W2074169638 @default.
- W3136229538 cites W2075489519 @default.
- W3136229538 cites W2080723329 @default.
- W3136229538 cites W2085400457 @default.
- W3136229538 cites W2097334502 @default.
- W3136229538 cites W2115567082 @default.
- W3136229538 cites W2128204969 @default.
- W3136229538 cites W2148554944 @default.
- W3136229538 cites W2153635508 @default.
- W3136229538 cites W2158863190 @default.
- W3136229538 cites W2169660473 @default.
- W3136229538 cites W2195707017 @default.
- W3136229538 cites W2266175888 @default.
- W3136229538 cites W2319962314 @default.
- W3136229538 cites W2344412690 @default.
- W3136229538 cites W2345973084 @default.
- W3136229538 cites W2484354989 @default.
- W3136229538 cites W2530691989 @default.
- W3136229538 cites W2791443927 @default.
- W3136229538 cites W2901019607 @default.
- W3136229538 cites W2906312952 @default.
- W3136229538 cites W2955909686 @default.
- W3136229538 cites W2999340369 @default.
- W3136229538 cites W3089626630 @default.
- W3136229538 cites W3094332746 @default.
- W3136229538 cites W4230771697 @default.
- W3136229538 cites W4300402905 @default.
- W3136229538 cites W52618725 @default.
- W3136229538 doi "https://doi.org/10.1109/access.2021.3065754" @default.
- W3136229538 hasPublicationYear "2021" @default.
- W3136229538 type Work @default.
- W3136229538 sameAs 3136229538 @default.
- W3136229538 citedByCount "3" @default.
- W3136229538 countsByYear W31362295382022 @default.
- W3136229538 countsByYear W31362295382023 @default.
- W3136229538 crossrefType "journal-article" @default.
- W3136229538 hasAuthorship W3136229538A5050726140 @default.
- W3136229538 hasAuthorship W3136229538A5071261627 @default.
- W3136229538 hasAuthorship W3136229538A5072927296 @default.
- W3136229538 hasAuthorship W3136229538A5083841737 @default.
- W3136229538 hasBestOaLocation W31362295381 @default.
- W3136229538 hasConcept C105795698 @default.
- W3136229538 hasConcept C119857082 @default.
- W3136229538 hasConcept C154945302 @default.
- W3136229538 hasConcept C165838908 @default.
- W3136229538 hasConcept C33923547 @default.
- W3136229538 hasConcept C41008148 @default.
- W3136229538 hasConceptScore W3136229538C105795698 @default.
- W3136229538 hasConceptScore W3136229538C119857082 @default.
- W3136229538 hasConceptScore W3136229538C154945302 @default.
- W3136229538 hasConceptScore W3136229538C165838908 @default.
- W3136229538 hasConceptScore W3136229538C33923547 @default.
- W3136229538 hasConceptScore W3136229538C41008148 @default.
- W3136229538 hasFunder F4320338335 @default.
- W3136229538 hasLocation W31362295381 @default.
- W3136229538 hasLocation W31362295382 @default.
- W3136229538 hasLocation W31362295383 @default.
- W3136229538 hasOpenAccess W3136229538 @default.
- W3136229538 hasPrimaryLocation W31362295381 @default.
- W3136229538 hasRelatedWork W2961085424 @default.
- W3136229538 hasRelatedWork W3046775127 @default.
- W3136229538 hasRelatedWork W3170094116 @default.
- W3136229538 hasRelatedWork W4205958290 @default.
- W3136229538 hasRelatedWork W4285260836 @default.
- W3136229538 hasRelatedWork W4286629047 @default.
- W3136229538 hasRelatedWork W4306321456 @default.
- W3136229538 hasRelatedWork W4306674287 @default.
- W3136229538 hasRelatedWork W4386462264 @default.
- W3136229538 hasRelatedWork W4224009465 @default.
- W3136229538 hasVolume "9" @default.
- W3136229538 isParatext "false" @default.
- W3136229538 isRetracted "false" @default.
- W3136229538 magId "3136229538" @default.
- W3136229538 workType "article" @default.