Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136232714> ?p ?o ?g. }
- W3136232714 abstract "Context: Research at the intersection of cybersecurity, Machine Learning (ML), and Software Engineering (SE) has recently taken significant steps in proposing countermeasures for detecting sophisticated data exfiltration attacks. It is important to systematically review and synthesize the ML-based data exfiltration countermeasures for building a body of knowledge on this important topic. Objective: This paper aims at systematically reviewing ML-based data exfiltration countermeasures to identify and classify ML approaches, feature engineering techniques, evaluation datasets, and performance metrics used for these countermeasures. This review also aims at identifying gaps in research on ML-based data exfiltration countermeasures. Method: We used a Systematic Literature Review (SLR) method to select and review {92} papers. Results: The review has enabled us to (a) classify the ML approaches used in the countermeasures into data-driven, and behaviour-driven approaches, (b) categorize features into six types: behavioural, content-based, statistical, syntactical, spatial and temporal, (c) classify the evaluation datasets into simulated, synthesized, and real datasets and (d) identify 11 performance measures used by these studies. Conclusion: We conclude that: (i) the integration of data-driven and behaviour-driven approaches should be explored; (ii) There is a need of developing high quality and large size evaluation datasets; (iii) Incremental ML model training should be incorporated in countermeasures; (iv) resilience to adversarial learning should be considered and explored during the development of countermeasures to avoid poisoning attacks; and (v) the use of automated feature engineering should be encouraged for efficiently detecting data exfiltration attacks." @default.
- W3136232714 created "2021-03-29" @default.
- W3136232714 creator A5037922412 @default.
- W3136232714 creator A5053607753 @default.
- W3136232714 creator A5058693284 @default.
- W3136232714 creator A5089776133 @default.
- W3136232714 date "2020-12-17" @default.
- W3136232714 modified "2023-10-07" @default.
- W3136232714 title "Machine Learning for Detecting Data Exfiltration: A Review" @default.
- W3136232714 cites W1109422923 @default.
- W3136232714 cites W132347231 @default.
- W3136232714 cites W1427174644 @default.
- W3136232714 cites W1487321909 @default.
- W3136232714 cites W1488440450 @default.
- W3136232714 cites W1493357981 @default.
- W3136232714 cites W1493971325 @default.
- W3136232714 cites W149687307 @default.
- W3136232714 cites W1506025786 @default.
- W3136232714 cites W1516506771 @default.
- W3136232714 cites W1530215515 @default.
- W3136232714 cites W1546503963 @default.
- W3136232714 cites W155995321 @default.
- W3136232714 cites W1591480890 @default.
- W3136232714 cites W1656664476 @default.
- W3136232714 cites W1680392829 @default.
- W3136232714 cites W1766594731 @default.
- W3136232714 cites W179875071 @default.
- W3136232714 cites W1817561967 @default.
- W3136232714 cites W1869391892 @default.
- W3136232714 cites W1877420198 @default.
- W3136232714 cites W1924770834 @default.
- W3136232714 cites W1930645144 @default.
- W3136232714 cites W1962340579 @default.
- W3136232714 cites W1966809779 @default.
- W3136232714 cites W1968969471 @default.
- W3136232714 cites W1969939902 @default.
- W3136232714 cites W1975675278 @default.
- W3136232714 cites W1979290264 @default.
- W3136232714 cites W1987552279 @default.
- W3136232714 cites W1988918299 @default.
- W3136232714 cites W2001693166 @default.
- W3136232714 cites W2008071701 @default.
- W3136232714 cites W2016395266 @default.
- W3136232714 cites W2017337590 @default.
- W3136232714 cites W2026258420 @default.
- W3136232714 cites W2029515984 @default.
- W3136232714 cites W2031177898 @default.
- W3136232714 cites W2035399628 @default.
- W3136232714 cites W2064675550 @default.
- W3136232714 cites W2078398370 @default.
- W3136232714 cites W2097794234 @default.
- W3136232714 cites W2115734893 @default.
- W3136232714 cites W2117920736 @default.
- W3136232714 cites W2121863487 @default.
- W3136232714 cites W2121990650 @default.
- W3136232714 cites W2124808847 @default.
- W3136232714 cites W2131571251 @default.
- W3136232714 cites W2132874238 @default.
- W3136232714 cites W2143264331 @default.
- W3136232714 cites W2143692712 @default.
- W3136232714 cites W2151666086 @default.
- W3136232714 cites W2155940963 @default.
- W3136232714 cites W2157970202 @default.
- W3136232714 cites W2158190429 @default.
- W3136232714 cites W2159637520 @default.
- W3136232714 cites W2161427420 @default.
- W3136232714 cites W2161830378 @default.
- W3136232714 cites W2163605009 @default.
- W3136232714 cites W2166353797 @default.
- W3136232714 cites W2167101736 @default.
- W3136232714 cites W2168939622 @default.
- W3136232714 cites W2181494315 @default.
- W3136232714 cites W2255638286 @default.
- W3136232714 cites W2271567685 @default.
- W3136232714 cites W2296509296 @default.
- W3136232714 cites W2312250904 @default.
- W3136232714 cites W2337913447 @default.
- W3136232714 cites W2342408547 @default.
- W3136232714 cites W2401272485 @default.
- W3136232714 cites W2467405173 @default.
- W3136232714 cites W2513712568 @default.
- W3136232714 cites W2533684757 @default.
- W3136232714 cites W2535782755 @default.
- W3136232714 cites W2549738163 @default.
- W3136232714 cites W2549975402 @default.
- W3136232714 cites W2560136348 @default.
- W3136232714 cites W2562319768 @default.
- W3136232714 cites W2587897831 @default.
- W3136232714 cites W2593238439 @default.
- W3136232714 cites W2595350342 @default.
- W3136232714 cites W2597441556 @default.
- W3136232714 cites W2603119212 @default.
- W3136232714 cites W2613480438 @default.
- W3136232714 cites W2732916693 @default.
- W3136232714 cites W2742947407 @default.
- W3136232714 cites W2758551931 @default.
- W3136232714 cites W2761525350 @default.
- W3136232714 cites W2765325683 @default.
- W3136232714 cites W2773446523 @default.
- W3136232714 cites W2780061022 @default.