Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136232832> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3136232832 endingPage "524" @default.
- W3136232832 startingPage "499" @default.
- W3136232832 abstract "Abstract We are interested in estimating the location of what we call “smooth change-point” from n independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to another which happens smoothly, but over such a small interval, that its length $$delta _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> is considered to be decreasing to 0 as $$nrightarrow +infty $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>→</mml:mo> <mml:mo>+</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . We show that if $$delta _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> goes to zero slower than 1/ n , our model is locally asymptotically normal (with a rather unusual rate $$sqrt{delta _n/n}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msqrt> <mml:mrow> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>/</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msqrt> </mml:math> ), and the maximum likelihood and Bayesian estimators are consistent, asymptotically normal and asymptotically efficient. If, on the contrary, $$delta _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> goes to zero faster than 1/ n , our model is non-regular and behaves like a change-point model. More precisely, in this case we show that the Bayesian estimators are consistent, converge at rate 1/ n , have non-Gaussian limit distributions and are asymptotically efficient. All these results are obtained using the likelihood ratio analysis method of Ibragimov and Khasminskii, which equally yields the convergence of polynomial moments of the considered estimators. However, in order to study the maximum likelihood estimator in the case where $$delta _n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> goes to zero faster than 1/ n , this method cannot be applied using the usual topologies of convergence in functional spaces. So, this study should go through the use of an alternative topology and will be considered in a future work." @default.
- W3136232832 created "2021-03-29" @default.
- W3136232832 creator A5025306548 @default.
- W3136232832 creator A5087684509 @default.
- W3136232832 date "2021-03-24" @default.
- W3136232832 modified "2023-09-25" @default.
- W3136232832 title "On smooth change-point location estimation for Poisson Processes" @default.
- W3136232832 cites W1582339268 @default.
- W3136232832 cites W1586180564 @default.
- W3136232832 cites W1586357498 @default.
- W3136232832 cites W1933338938 @default.
- W3136232832 cites W1973975076 @default.
- W3136232832 cites W1980109111 @default.
- W3136232832 cites W2492752217 @default.
- W3136232832 cites W2501157644 @default.
- W3136232832 cites W2792889792 @default.
- W3136232832 cites W2963205483 @default.
- W3136232832 cites W2963492566 @default.
- W3136232832 cites W2963811642 @default.
- W3136232832 cites W2967509957 @default.
- W3136232832 cites W4293859755 @default.
- W3136232832 cites W4300126076 @default.
- W3136232832 cites W4301082185 @default.
- W3136232832 doi "https://doi.org/10.1007/s11203-021-09240-w" @default.
- W3136232832 hasPublicationYear "2021" @default.
- W3136232832 type Work @default.
- W3136232832 sameAs 3136232832 @default.
- W3136232832 citedByCount "0" @default.
- W3136232832 crossrefType "journal-article" @default.
- W3136232832 hasAuthorship W3136232832A5025306548 @default.
- W3136232832 hasAuthorship W3136232832A5087684509 @default.
- W3136232832 hasBestOaLocation W31362328321 @default.
- W3136232832 hasConcept C11413529 @default.
- W3136232832 hasConcept C154945302 @default.
- W3136232832 hasConcept C41008148 @default.
- W3136232832 hasConceptScore W3136232832C11413529 @default.
- W3136232832 hasConceptScore W3136232832C154945302 @default.
- W3136232832 hasConceptScore W3136232832C41008148 @default.
- W3136232832 hasIssue "3" @default.
- W3136232832 hasLocation W31362328321 @default.
- W3136232832 hasLocation W313623283210 @default.
- W3136232832 hasLocation W31362328322 @default.
- W3136232832 hasLocation W31362328323 @default.
- W3136232832 hasLocation W31362328324 @default.
- W3136232832 hasLocation W31362328325 @default.
- W3136232832 hasLocation W31362328326 @default.
- W3136232832 hasLocation W31362328327 @default.
- W3136232832 hasLocation W31362328328 @default.
- W3136232832 hasLocation W31362328329 @default.
- W3136232832 hasOpenAccess W3136232832 @default.
- W3136232832 hasPrimaryLocation W31362328321 @default.
- W3136232832 hasRelatedWork W2051487156 @default.
- W3136232832 hasRelatedWork W2073681303 @default.
- W3136232832 hasRelatedWork W2317200988 @default.
- W3136232832 hasRelatedWork W2358668433 @default.
- W3136232832 hasRelatedWork W2376932109 @default.
- W3136232832 hasRelatedWork W2382290278 @default.
- W3136232832 hasRelatedWork W2386767533 @default.
- W3136232832 hasRelatedWork W2390279801 @default.
- W3136232832 hasRelatedWork W2748952813 @default.
- W3136232832 hasRelatedWork W2899084033 @default.
- W3136232832 hasVolume "24" @default.
- W3136232832 isParatext "false" @default.
- W3136232832 isRetracted "false" @default.
- W3136232832 magId "3136232832" @default.
- W3136232832 workType "article" @default.