Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136237544> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3136237544 abstract "Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP process optimization. The most difficult thing in CMP process is to have capability to predict and cover the various topologies and layout densities patterned wafers and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density test vehicle pattern wafers. Transfer learning technique is implemented on the original Neural -Network algorithm model, the behavior of real product can be simulated and predicted based on the knowledge of test vehicle database successfully. With the aid of multiple layer erosion/ dishing Neural-Network algorithm model prediction, the potential high risky hot spots can be highlighted at the initial layout design stage, then further shorten the turn-around time of design layout validation." @default.
- W3136237544 created "2021-03-29" @default.
- W3136237544 creator A5004560416 @default.
- W3136237544 creator A5015266396 @default.
- W3136237544 creator A5031659577 @default.
- W3136237544 creator A5037547433 @default.
- W3136237544 creator A5053411887 @default.
- W3136237544 creator A5067313726 @default.
- W3136237544 creator A5071231987 @default.
- W3136237544 creator A5072137495 @default.
- W3136237544 creator A5082109806 @default.
- W3136237544 date "2020-12-15" @default.
- W3136237544 modified "2023-10-14" @default.
- W3136237544 title "CMP Process Optimization Engineering by Machine Learning" @default.
- W3136237544 cites W2043201552 @default.
- W3136237544 cites W2066952721 @default.
- W3136237544 cites W2139808323 @default.
- W3136237544 cites W2166762151 @default.
- W3136237544 cites W2395579298 @default.
- W3136237544 cites W2606754133 @default.
- W3136237544 cites W2923996772 @default.
- W3136237544 cites W3010776687 @default.
- W3136237544 cites W3039562258 @default.
- W3136237544 cites W3149933339 @default.
- W3136237544 cites W649748417 @default.
- W3136237544 doi "https://doi.org/10.1109/issm51728.2020.9377524" @default.
- W3136237544 hasPublicationYear "2020" @default.
- W3136237544 type Work @default.
- W3136237544 sameAs 3136237544 @default.
- W3136237544 citedByCount "0" @default.
- W3136237544 crossrefType "proceedings-article" @default.
- W3136237544 hasAuthorship W3136237544A5004560416 @default.
- W3136237544 hasAuthorship W3136237544A5015266396 @default.
- W3136237544 hasAuthorship W3136237544A5031659577 @default.
- W3136237544 hasAuthorship W3136237544A5037547433 @default.
- W3136237544 hasAuthorship W3136237544A5053411887 @default.
- W3136237544 hasAuthorship W3136237544A5067313726 @default.
- W3136237544 hasAuthorship W3136237544A5071231987 @default.
- W3136237544 hasAuthorship W3136237544A5072137495 @default.
- W3136237544 hasAuthorship W3136237544A5082109806 @default.
- W3136237544 hasConcept C111919701 @default.
- W3136237544 hasConcept C127413603 @default.
- W3136237544 hasConcept C138113353 @default.
- W3136237544 hasConcept C154945302 @default.
- W3136237544 hasConcept C155386361 @default.
- W3136237544 hasConcept C159985019 @default.
- W3136237544 hasConcept C160671074 @default.
- W3136237544 hasConcept C171250308 @default.
- W3136237544 hasConcept C180088628 @default.
- W3136237544 hasConcept C192562407 @default.
- W3136237544 hasConcept C199845137 @default.
- W3136237544 hasConcept C2779227376 @default.
- W3136237544 hasConcept C41008148 @default.
- W3136237544 hasConcept C50644808 @default.
- W3136237544 hasConcept C78371743 @default.
- W3136237544 hasConcept C78519656 @default.
- W3136237544 hasConcept C98045186 @default.
- W3136237544 hasConceptScore W3136237544C111919701 @default.
- W3136237544 hasConceptScore W3136237544C127413603 @default.
- W3136237544 hasConceptScore W3136237544C138113353 @default.
- W3136237544 hasConceptScore W3136237544C154945302 @default.
- W3136237544 hasConceptScore W3136237544C155386361 @default.
- W3136237544 hasConceptScore W3136237544C159985019 @default.
- W3136237544 hasConceptScore W3136237544C160671074 @default.
- W3136237544 hasConceptScore W3136237544C171250308 @default.
- W3136237544 hasConceptScore W3136237544C180088628 @default.
- W3136237544 hasConceptScore W3136237544C192562407 @default.
- W3136237544 hasConceptScore W3136237544C199845137 @default.
- W3136237544 hasConceptScore W3136237544C2779227376 @default.
- W3136237544 hasConceptScore W3136237544C41008148 @default.
- W3136237544 hasConceptScore W3136237544C50644808 @default.
- W3136237544 hasConceptScore W3136237544C78371743 @default.
- W3136237544 hasConceptScore W3136237544C78519656 @default.
- W3136237544 hasConceptScore W3136237544C98045186 @default.
- W3136237544 hasLocation W31362375441 @default.
- W3136237544 hasOpenAccess W3136237544 @default.
- W3136237544 hasPrimaryLocation W31362375441 @default.
- W3136237544 hasRelatedWork W10961682 @default.
- W3136237544 hasRelatedWork W11171182 @default.
- W3136237544 hasRelatedWork W13086417 @default.
- W3136237544 hasRelatedWork W1771758 @default.
- W3136237544 hasRelatedWork W2235786 @default.
- W3136237544 hasRelatedWork W2286132 @default.
- W3136237544 hasRelatedWork W3011254 @default.
- W3136237544 hasRelatedWork W7339520 @default.
- W3136237544 hasRelatedWork W8082996 @default.
- W3136237544 hasRelatedWork W9040387 @default.
- W3136237544 isParatext "false" @default.
- W3136237544 isRetracted "false" @default.
- W3136237544 magId "3136237544" @default.
- W3136237544 workType "article" @default.