Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136238717> ?p ?o ?g. }
- W3136238717 endingPage "1431" @default.
- W3136238717 startingPage "1431" @default.
- W3136238717 abstract "(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively. Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from 148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity, and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the confounding effect of environmental VOCs on the relationship between participants’ exhaled VOCs and lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an XGBoost classifier provides a persuasive platform for lung cancer prediction." @default.
- W3136238717 created "2021-03-29" @default.
- W3136238717 creator A5004095357 @default.
- W3136238717 creator A5004329931 @default.
- W3136238717 creator A5026625825 @default.
- W3136238717 creator A5037920513 @default.
- W3136238717 creator A5055032095 @default.
- W3136238717 creator A5057157712 @default.
- W3136238717 creator A5058108838 @default.
- W3136238717 creator A5065991652 @default.
- W3136238717 creator A5067015837 @default.
- W3136238717 creator A5067103278 @default.
- W3136238717 creator A5069471681 @default.
- W3136238717 creator A5078713318 @default.
- W3136238717 creator A5081040175 @default.
- W3136238717 creator A5083183162 @default.
- W3136238717 creator A5083368940 @default.
- W3136238717 creator A5085641733 @default.
- W3136238717 date "2021-03-21" @default.
- W3136238717 modified "2023-10-06" @default.
- W3136238717 title "Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer" @default.
- W3136238717 cites W130099911 @default.
- W3136238717 cites W1484289650 @default.
- W3136238717 cites W1695296096 @default.
- W3136238717 cites W1940373023 @default.
- W3136238717 cites W1972321126 @default.
- W3136238717 cites W2017224356 @default.
- W3136238717 cites W2020928848 @default.
- W3136238717 cites W2023002358 @default.
- W3136238717 cites W2036103055 @default.
- W3136238717 cites W2039811853 @default.
- W3136238717 cites W2050826644 @default.
- W3136238717 cites W2053465337 @default.
- W3136238717 cites W2057847283 @default.
- W3136238717 cites W2063171131 @default.
- W3136238717 cites W2063281883 @default.
- W3136238717 cites W2063821826 @default.
- W3136238717 cites W2072331122 @default.
- W3136238717 cites W2088708926 @default.
- W3136238717 cites W2090534756 @default.
- W3136238717 cites W2098224798 @default.
- W3136238717 cites W2102788947 @default.
- W3136238717 cites W2102810061 @default.
- W3136238717 cites W2105673592 @default.
- W3136238717 cites W2123911518 @default.
- W3136238717 cites W2124721964 @default.
- W3136238717 cites W2144379247 @default.
- W3136238717 cites W2148143831 @default.
- W3136238717 cites W2209503093 @default.
- W3136238717 cites W2293426979 @default.
- W3136238717 cites W2403737244 @default.
- W3136238717 cites W2561181433 @default.
- W3136238717 cites W2587333480 @default.
- W3136238717 cites W2591509398 @default.
- W3136238717 cites W2624912387 @default.
- W3136238717 cites W2744211371 @default.
- W3136238717 cites W2753793431 @default.
- W3136238717 cites W2772798219 @default.
- W3136238717 cites W2774305061 @default.
- W3136238717 cites W2775964019 @default.
- W3136238717 cites W2781525129 @default.
- W3136238717 cites W2783674487 @default.
- W3136238717 cites W2799820862 @default.
- W3136238717 cites W2804686217 @default.
- W3136238717 cites W2809998966 @default.
- W3136238717 cites W2885919156 @default.
- W3136238717 cites W2913894354 @default.
- W3136238717 cites W2913982013 @default.
- W3136238717 cites W2921909073 @default.
- W3136238717 cites W3015043285 @default.
- W3136238717 cites W3102476541 @default.
- W3136238717 cites W3110663202 @default.
- W3136238717 cites W44319099 @default.
- W3136238717 doi "https://doi.org/10.3390/cancers13061431" @default.
- W3136238717 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8003836" @default.
- W3136238717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33801001" @default.
- W3136238717 hasPublicationYear "2021" @default.
- W3136238717 type Work @default.
- W3136238717 sameAs 3136238717 @default.
- W3136238717 citedByCount "25" @default.
- W3136238717 countsByYear W31362387172021 @default.
- W3136238717 countsByYear W31362387172022 @default.
- W3136238717 countsByYear W31362387172023 @default.
- W3136238717 crossrefType "journal-article" @default.
- W3136238717 hasAuthorship W3136238717A5004095357 @default.
- W3136238717 hasAuthorship W3136238717A5004329931 @default.
- W3136238717 hasAuthorship W3136238717A5026625825 @default.
- W3136238717 hasAuthorship W3136238717A5037920513 @default.
- W3136238717 hasAuthorship W3136238717A5055032095 @default.
- W3136238717 hasAuthorship W3136238717A5057157712 @default.
- W3136238717 hasAuthorship W3136238717A5058108838 @default.
- W3136238717 hasAuthorship W3136238717A5065991652 @default.
- W3136238717 hasAuthorship W3136238717A5067015837 @default.
- W3136238717 hasAuthorship W3136238717A5067103278 @default.
- W3136238717 hasAuthorship W3136238717A5069471681 @default.
- W3136238717 hasAuthorship W3136238717A5078713318 @default.
- W3136238717 hasAuthorship W3136238717A5081040175 @default.
- W3136238717 hasAuthorship W3136238717A5083183162 @default.