Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136238941> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3136238941 abstract "Finite mixture models have been revealed to provide flexibility for data clustering. They have demonstrated high competence and potential to capture hidden structure in data. Modern technological progresses, growing volumes and varieties of generated data, revolutionized computers and other related factors are contributing to produce large scale data. This fact enhances the significance of finding reliable and adaptable models which can analyze bigger, more complex data to identify latent patterns, deliver faster and more accurate results and make decisions with minimal human interaction.Adopting the finest and most accurate distribution that appropriately represents the mixture components is critical. The most widely adopted generative model has been the Gaussian mixture. In numerous real-world applications, however, when the nature and structure of data are non-Gaussian, this modelling fails. One of the other crucial issues when using mixtures is determination ofthe model complexity or number of mixture components. Minimum message length (MML) is one of the main techniques in frequentist frameworks to tackle this challenging issue.In this work, we have designed and implemented a finite mixture model, using the bivariate and multivariate Betadistributions for cluster analysis and demonstrated its flexibility in describing the intrinsic characteristics of the observed data.In addition, we have applied our estimation and model selection algorithms to synthetic and real datasets. Most importantly, we considered interesting applications such as in image segmentation, software modules defect prediction, spam detection and occupancy estimation in smart buildings." @default.
- W3136238941 created "2021-03-29" @default.
- W3136238941 creator A5091833816 @default.
- W3136238941 date "2019-02-28" @default.
- W3136238941 modified "2023-09-27" @default.
- W3136238941 title "Finite Bivariate and Multivariate Beta Mixture Models Learning and Applications" @default.
- W3136238941 cites W1579271636 @default.
- W3136238941 cites W1587070286 @default.
- W3136238941 cites W1597703858 @default.
- W3136238941 cites W1603978410 @default.
- W3136238941 cites W1672049915 @default.
- W3136238941 cites W170307911 @default.
- W3136238941 cites W1964962870 @default.
- W3136238941 cites W1968353133 @default.
- W3136238941 cites W1982004548 @default.
- W3136238941 cites W2000930721 @default.
- W3136238941 cites W2007378618 @default.
- W3136238941 cites W2009206745 @default.
- W3136238941 cites W2011275121 @default.
- W3136238941 cites W2015245929 @default.
- W3136238941 cites W2035893370 @default.
- W3136238941 cites W2048695473 @default.
- W3136238941 cites W2049633694 @default.
- W3136238941 cites W2051071899 @default.
- W3136238941 cites W2096784803 @default.
- W3136238941 cites W2117853077 @default.
- W3136238941 cites W2119053066 @default.
- W3136238941 cites W2121927366 @default.
- W3136238941 cites W2128233170 @default.
- W3136238941 cites W2133703553 @default.
- W3136238941 cites W2133711389 @default.
- W3136238941 cites W2140190241 @default.
- W3136238941 cites W2143712427 @default.
- W3136238941 cites W2160477239 @default.
- W3136238941 cites W2163008893 @default.
- W3136238941 cites W2743326897 @default.
- W3136238941 cites W2942988470 @default.
- W3136238941 hasPublicationYear "2019" @default.
- W3136238941 type Work @default.
- W3136238941 sameAs 3136238941 @default.
- W3136238941 citedByCount "0" @default.
- W3136238941 crossrefType "dissertation" @default.
- W3136238941 hasAuthorship W3136238941A5091833816 @default.
- W3136238941 hasConcept C105795698 @default.
- W3136238941 hasConcept C119857082 @default.
- W3136238941 hasConcept C124101348 @default.
- W3136238941 hasConcept C154945302 @default.
- W3136238941 hasConcept C161584116 @default.
- W3136238941 hasConcept C167966045 @default.
- W3136238941 hasConcept C2780598303 @default.
- W3136238941 hasConcept C33923547 @default.
- W3136238941 hasConcept C39890363 @default.
- W3136238941 hasConcept C41008148 @default.
- W3136238941 hasConcept C61224824 @default.
- W3136238941 hasConcept C64341305 @default.
- W3136238941 hasConcept C73555534 @default.
- W3136238941 hasConcept C93959086 @default.
- W3136238941 hasConceptScore W3136238941C105795698 @default.
- W3136238941 hasConceptScore W3136238941C119857082 @default.
- W3136238941 hasConceptScore W3136238941C124101348 @default.
- W3136238941 hasConceptScore W3136238941C154945302 @default.
- W3136238941 hasConceptScore W3136238941C161584116 @default.
- W3136238941 hasConceptScore W3136238941C167966045 @default.
- W3136238941 hasConceptScore W3136238941C2780598303 @default.
- W3136238941 hasConceptScore W3136238941C33923547 @default.
- W3136238941 hasConceptScore W3136238941C39890363 @default.
- W3136238941 hasConceptScore W3136238941C41008148 @default.
- W3136238941 hasConceptScore W3136238941C61224824 @default.
- W3136238941 hasConceptScore W3136238941C64341305 @default.
- W3136238941 hasConceptScore W3136238941C73555534 @default.
- W3136238941 hasConceptScore W3136238941C93959086 @default.
- W3136238941 hasLocation W31362389411 @default.
- W3136238941 hasOpenAccess W3136238941 @default.
- W3136238941 hasPrimaryLocation W31362389411 @default.
- W3136238941 hasRelatedWork W1554288356 @default.
- W3136238941 hasRelatedWork W1583094025 @default.
- W3136238941 hasRelatedWork W194341024 @default.
- W3136238941 hasRelatedWork W2326532020 @default.
- W3136238941 hasRelatedWork W2573803260 @default.
- W3136238941 hasRelatedWork W2583908140 @default.
- W3136238941 hasRelatedWork W2625683755 @default.
- W3136238941 hasRelatedWork W2626545623 @default.
- W3136238941 hasRelatedWork W2884624555 @default.
- W3136238941 hasRelatedWork W2888040559 @default.
- W3136238941 hasRelatedWork W2891433624 @default.
- W3136238941 hasRelatedWork W2925837647 @default.
- W3136238941 hasRelatedWork W2985706324 @default.
- W3136238941 hasRelatedWork W3008516629 @default.
- W3136238941 hasRelatedWork W3091582224 @default.
- W3136238941 hasRelatedWork W3092354115 @default.
- W3136238941 hasRelatedWork W3093131071 @default.
- W3136238941 hasRelatedWork W3193860948 @default.
- W3136238941 hasRelatedWork W331379265 @default.
- W3136238941 hasRelatedWork W3147082635 @default.
- W3136238941 isParatext "false" @default.
- W3136238941 isRetracted "false" @default.
- W3136238941 magId "3136238941" @default.
- W3136238941 workType "dissertation" @default.