Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136239334> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3136239334 endingPage "39" @default.
- W3136239334 startingPage "33" @default.
- W3136239334 abstract "One of the most common malignant tumors in the world today is lung cancer, and it is the primary cause of death from cancer. With the continuous advancement of urbanization and industrialization, the problem of air pollution has become more and more serious. The best treatment period for lung cancer is the early stage. However, the early stage of lung cancer often does not have any clinical symptoms and is difficult to be found. In this paper, lung nodule classification has been performed; the data have used of CT image is SPIE AAPM-Lung. In recent years, deep learning (DL) was a popular approach to the classification process. One of the DL approaches that have used is Transfer Learning (TL) to eliminate training costs from scratch and to train for deep learning with small training data. Nowadays, researchers have been trying various deep learning techniques to improve the efficiency of CAD (computer-aided system) with computed tomography in lung cancer screening. In this work, we implemented pre-trained CNN include: AlexNet, ResNet18, Googlenet, and ResNet50 models. These networks are used for training the network and CT image classification. CNN and TL are used to achieve high performance resulting and specify lung cancer detection on CT images. The evaluation of models is calculated by some matrices such as confusion matrix, precision, recall, specificity, and f1-score." @default.
- W3136239334 created "2021-03-29" @default.
- W3136239334 creator A5061046364 @default.
- W3136239334 creator A5086708838 @default.
- W3136239334 date "2021-02-28" @default.
- W3136239334 modified "2023-10-06" @default.
- W3136239334 title "Lung cancer classification with Convolutional Neural Network Architectures" @default.
- W3136239334 cites W2117539524 @default.
- W3136239334 cites W2165698076 @default.
- W3136239334 cites W2253429366 @default.
- W3136239334 cites W2306911452 @default.
- W3136239334 cites W2734776202 @default.
- W3136239334 cites W2743008510 @default.
- W3136239334 cites W2911564943 @default.
- W3136239334 cites W2952409677 @default.
- W3136239334 cites W2952716993 @default.
- W3136239334 cites W2954996726 @default.
- W3136239334 cites W2985286907 @default.
- W3136239334 cites W3009210879 @default.
- W3136239334 doi "https://doi.org/10.48161/qaj.v1n1a33" @default.
- W3136239334 hasPublicationYear "2021" @default.
- W3136239334 type Work @default.
- W3136239334 sameAs 3136239334 @default.
- W3136239334 citedByCount "2" @default.
- W3136239334 countsByYear W31362393342023 @default.
- W3136239334 crossrefType "journal-article" @default.
- W3136239334 hasAuthorship W3136239334A5061046364 @default.
- W3136239334 hasAuthorship W3136239334A5086708838 @default.
- W3136239334 hasBestOaLocation W31362393341 @default.
- W3136239334 hasConcept C108583219 @default.
- W3136239334 hasConcept C115961682 @default.
- W3136239334 hasConcept C119857082 @default.
- W3136239334 hasConcept C121608353 @default.
- W3136239334 hasConcept C126322002 @default.
- W3136239334 hasConcept C126838900 @default.
- W3136239334 hasConcept C138602881 @default.
- W3136239334 hasConcept C142724271 @default.
- W3136239334 hasConcept C150899416 @default.
- W3136239334 hasConcept C153180895 @default.
- W3136239334 hasConcept C154945302 @default.
- W3136239334 hasConcept C2776256026 @default.
- W3136239334 hasConcept C2779549770 @default.
- W3136239334 hasConcept C41008148 @default.
- W3136239334 hasConcept C71924100 @default.
- W3136239334 hasConcept C75294576 @default.
- W3136239334 hasConcept C81363708 @default.
- W3136239334 hasConceptScore W3136239334C108583219 @default.
- W3136239334 hasConceptScore W3136239334C115961682 @default.
- W3136239334 hasConceptScore W3136239334C119857082 @default.
- W3136239334 hasConceptScore W3136239334C121608353 @default.
- W3136239334 hasConceptScore W3136239334C126322002 @default.
- W3136239334 hasConceptScore W3136239334C126838900 @default.
- W3136239334 hasConceptScore W3136239334C138602881 @default.
- W3136239334 hasConceptScore W3136239334C142724271 @default.
- W3136239334 hasConceptScore W3136239334C150899416 @default.
- W3136239334 hasConceptScore W3136239334C153180895 @default.
- W3136239334 hasConceptScore W3136239334C154945302 @default.
- W3136239334 hasConceptScore W3136239334C2776256026 @default.
- W3136239334 hasConceptScore W3136239334C2779549770 @default.
- W3136239334 hasConceptScore W3136239334C41008148 @default.
- W3136239334 hasConceptScore W3136239334C71924100 @default.
- W3136239334 hasConceptScore W3136239334C75294576 @default.
- W3136239334 hasConceptScore W3136239334C81363708 @default.
- W3136239334 hasIssue "1" @default.
- W3136239334 hasLocation W31362393341 @default.
- W3136239334 hasOpenAccess W3136239334 @default.
- W3136239334 hasPrimaryLocation W31362393341 @default.
- W3136239334 hasRelatedWork W2996856019 @default.
- W3136239334 hasRelatedWork W3012393889 @default.
- W3136239334 hasRelatedWork W3018421652 @default.
- W3136239334 hasRelatedWork W3021430260 @default.
- W3136239334 hasRelatedWork W3091976719 @default.
- W3136239334 hasRelatedWork W3192840557 @default.
- W3136239334 hasRelatedWork W4220996320 @default.
- W3136239334 hasRelatedWork W4285149559 @default.
- W3136239334 hasRelatedWork W4312200629 @default.
- W3136239334 hasRelatedWork W4382286161 @default.
- W3136239334 hasVolume "1" @default.
- W3136239334 isParatext "false" @default.
- W3136239334 isRetracted "false" @default.
- W3136239334 magId "3136239334" @default.
- W3136239334 workType "article" @default.