Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136239615> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3136239615 abstract "Online transactions have increased drastically over the past decades. Credit card transactions account for a large percentage of these transactions. This leads to rise activities of credit card fraud transactions, causing losses in the finance industry. Therefore, it is vital to create reliable fraud detection systems, including two labels of fraud and no-fraud. However, there are highly unbalanced data between these two labels. In this paper, we use two resampling approaches of synthetic minority oversampling technique (SMOTE) and adaptive synthetic (ADASYN) to handle an imbalanced dataset to obtain the balanced dataset. The machine learning (ML) algorithms, named random forest, k nearest neighbors, decision tree, and logistic regression are applied to this balanced dataset. The comprehensive classification measurements, including fundamental, combined, and graphical measurements are used to evaluate the performances of these models. We observe that after resampling the dataset, the ML algorithms mentioned show the positive results of classification for fraudulent activities." @default.
- W3136239615 created "2021-03-29" @default.
- W3136239615 creator A5029072011 @default.
- W3136239615 creator A5077878691 @default.
- W3136239615 date "2021-01-04" @default.
- W3136239615 modified "2023-10-16" @default.
- W3136239615 title "Machine Learning for Prediction of Imbalanced Data: Credit Fraud Detection" @default.
- W3136239615 cites W2015363484 @default.
- W3136239615 cites W2085006623 @default.
- W3136239615 cites W2091503195 @default.
- W3136239615 cites W2096266510 @default.
- W3136239615 cites W2105809068 @default.
- W3136239615 cites W2148143831 @default.
- W3136239615 cites W2170505850 @default.
- W3136239615 cites W2606176882 @default.
- W3136239615 cites W2735186907 @default.
- W3136239615 cites W2810374509 @default.
- W3136239615 cites W2811407760 @default.
- W3136239615 cites W2911964244 @default.
- W3136239615 cites W2958026736 @default.
- W3136239615 cites W2966860114 @default.
- W3136239615 cites W2989652575 @default.
- W3136239615 cites W2989728029 @default.
- W3136239615 cites W3007112080 @default.
- W3136239615 cites W3009384997 @default.
- W3136239615 cites W3020517851 @default.
- W3136239615 cites W3035922394 @default.
- W3136239615 cites W3037531538 @default.
- W3136239615 cites W3048123939 @default.
- W3136239615 cites W3140909510 @default.
- W3136239615 cites W4236137412 @default.
- W3136239615 cites W4243367342 @default.
- W3136239615 doi "https://doi.org/10.1109/imcom51814.2021.9377352" @default.
- W3136239615 hasPublicationYear "2021" @default.
- W3136239615 type Work @default.
- W3136239615 sameAs 3136239615 @default.
- W3136239615 citedByCount "8" @default.
- W3136239615 countsByYear W31362396152021 @default.
- W3136239615 countsByYear W31362396152022 @default.
- W3136239615 countsByYear W31362396152023 @default.
- W3136239615 crossrefType "proceedings-article" @default.
- W3136239615 hasAuthorship W3136239615A5029072011 @default.
- W3136239615 hasAuthorship W3136239615A5077878691 @default.
- W3136239615 hasConcept C119857082 @default.
- W3136239615 hasConcept C124101348 @default.
- W3136239615 hasConcept C136764020 @default.
- W3136239615 hasConcept C145097563 @default.
- W3136239615 hasConcept C150921843 @default.
- W3136239615 hasConcept C154945302 @default.
- W3136239615 hasConcept C169258074 @default.
- W3136239615 hasConcept C197323446 @default.
- W3136239615 hasConcept C2776257435 @default.
- W3136239615 hasConcept C2780747020 @default.
- W3136239615 hasConcept C2983355114 @default.
- W3136239615 hasConcept C31258907 @default.
- W3136239615 hasConcept C41008148 @default.
- W3136239615 hasConcept C84525736 @default.
- W3136239615 hasConceptScore W3136239615C119857082 @default.
- W3136239615 hasConceptScore W3136239615C124101348 @default.
- W3136239615 hasConceptScore W3136239615C136764020 @default.
- W3136239615 hasConceptScore W3136239615C145097563 @default.
- W3136239615 hasConceptScore W3136239615C150921843 @default.
- W3136239615 hasConceptScore W3136239615C154945302 @default.
- W3136239615 hasConceptScore W3136239615C169258074 @default.
- W3136239615 hasConceptScore W3136239615C197323446 @default.
- W3136239615 hasConceptScore W3136239615C2776257435 @default.
- W3136239615 hasConceptScore W3136239615C2780747020 @default.
- W3136239615 hasConceptScore W3136239615C2983355114 @default.
- W3136239615 hasConceptScore W3136239615C31258907 @default.
- W3136239615 hasConceptScore W3136239615C41008148 @default.
- W3136239615 hasConceptScore W3136239615C84525736 @default.
- W3136239615 hasLocation W31362396151 @default.
- W3136239615 hasOpenAccess W3136239615 @default.
- W3136239615 hasPrimaryLocation W31362396151 @default.
- W3136239615 hasRelatedWork W2483711049 @default.
- W3136239615 hasRelatedWork W2984276143 @default.
- W3136239615 hasRelatedWork W3022501507 @default.
- W3136239615 hasRelatedWork W3150316110 @default.
- W3136239615 hasRelatedWork W3153799676 @default.
- W3136239615 hasRelatedWork W3206973182 @default.
- W3136239615 hasRelatedWork W4205824301 @default.
- W3136239615 hasRelatedWork W4224237387 @default.
- W3136239615 hasRelatedWork W4313247660 @default.
- W3136239615 hasRelatedWork W4367022971 @default.
- W3136239615 isParatext "false" @default.
- W3136239615 isRetracted "false" @default.
- W3136239615 magId "3136239615" @default.
- W3136239615 workType "article" @default.