Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136241689> ?p ?o ?g. }
- W3136241689 abstract "Accurately identifying classification biomarkers for distinguishing between normal and cancer samples is challenging. Additionally, the reproducibility of single-molecule biomarkers is limited by the existence of heterogeneous patient subgroups and differences in the sequencing techniques used to collect patient data. In this study, we developed a method to identify robust biomarkers (i.e., miRNA-mediated subpathways) associated with prostate cancer based on normal prostate samples and cancer samples from a dataset from The Cancer Genome Atlas (TCGA; n = 546) and datasets from the Gene Expression Omnibus (GEO) database ( n = 139 and n = 90, with the latter being a cell line dataset). We also obtained 10 other cancer datasets to evaluate the performance of the method. We propose a multi-omics data integration strategy for identifying classification biomarkers using a machine learning method that involves reassigning topological weights to the genes using a directed random walk (DRW)-based method. A global directed pathway network (GDPN) was constructed based on the significantly differentially expressed target genes of the significantly differentially expressed miRNAs, which allowed us to identify the robust biomarkers in the form of miRNA-mediated subpathways (miRNAs). The activity value of each miRNA-mediated subpathway was calculated by integrating multiple types of data, which included the expression of the miRNA and the miRNAs’ target genes and GDPN topological information. Finally, we identified the high-frequency miRNA-mediated subpathways involved in prostate cancer using a support vector machine (SVM) model. The results demonstrated that we obtained robust biomarkers of prostate cancer, which could classify prostate cancer and normal samples. Our method outperformed seven other methods, and many of the identified biomarkers were associated with known clinical treatments." @default.
- W3136241689 created "2021-03-29" @default.
- W3136241689 creator A5002683576 @default.
- W3136241689 creator A5017551961 @default.
- W3136241689 creator A5065296916 @default.
- W3136241689 creator A5071909155 @default.
- W3136241689 creator A5078070899 @default.
- W3136241689 creator A5085297646 @default.
- W3136241689 date "2021-03-24" @default.
- W3136241689 modified "2023-10-14" @default.
- W3136241689 title "Identification of miRNA-Mediated Subpathways as Prostate Cancer Biomarkers Based on Topological Inference in a Machine Learning Process Using Integrated Gene and miRNA Expression Data" @default.
- W3136241689 cites W1889514258 @default.
- W3136241689 cites W1976830478 @default.
- W3136241689 cites W1982297646 @default.
- W3136241689 cites W1983428971 @default.
- W3136241689 cites W1986308117 @default.
- W3136241689 cites W1990678336 @default.
- W3136241689 cites W1992045522 @default.
- W3136241689 cites W2002259918 @default.
- W3136241689 cites W2003463953 @default.
- W3136241689 cites W2007192053 @default.
- W3136241689 cites W2008473350 @default.
- W3136241689 cites W2019801716 @default.
- W3136241689 cites W2055167407 @default.
- W3136241689 cites W2056254608 @default.
- W3136241689 cites W2058451329 @default.
- W3136241689 cites W2066636486 @default.
- W3136241689 cites W2107633226 @default.
- W3136241689 cites W2112090702 @default.
- W3136241689 cites W2115580179 @default.
- W3136241689 cites W2115806147 @default.
- W3136241689 cites W2119220491 @default.
- W3136241689 cites W2134118500 @default.
- W3136241689 cites W2140416663 @default.
- W3136241689 cites W2145387574 @default.
- W3136241689 cites W2154972152 @default.
- W3136241689 cites W2165179743 @default.
- W3136241689 cites W2169194081 @default.
- W3136241689 cites W2287839121 @default.
- W3136241689 cites W2408918442 @default.
- W3136241689 cites W2594016532 @default.
- W3136241689 cites W2615322840 @default.
- W3136241689 cites W2624830747 @default.
- W3136241689 cites W2730407871 @default.
- W3136241689 cites W2767546566 @default.
- W3136241689 cites W2767723643 @default.
- W3136241689 cites W2768632638 @default.
- W3136241689 cites W2782636435 @default.
- W3136241689 cites W2891073452 @default.
- W3136241689 cites W2892502396 @default.
- W3136241689 cites W2911964244 @default.
- W3136241689 cites W2942559242 @default.
- W3136241689 cites W2954727256 @default.
- W3136241689 cites W2963197706 @default.
- W3136241689 cites W2964818755 @default.
- W3136241689 cites W2968399420 @default.
- W3136241689 cites W2999183200 @default.
- W3136241689 cites W3011558837 @default.
- W3136241689 cites W3034917887 @default.
- W3136241689 cites W3037348089 @default.
- W3136241689 cites W3049626404 @default.
- W3136241689 cites W3078155200 @default.
- W3136241689 cites W3081708883 @default.
- W3136241689 cites W3088439140 @default.
- W3136241689 cites W3091443531 @default.
- W3136241689 cites W3094610463 @default.
- W3136241689 cites W3110887898 @default.
- W3136241689 cites W3112585440 @default.
- W3136241689 cites W3113299042 @default.
- W3136241689 cites W3119552219 @default.
- W3136241689 doi "https://doi.org/10.3389/fgene.2021.656526" @default.
- W3136241689 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8024646" @default.
- W3136241689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33841512" @default.
- W3136241689 hasPublicationYear "2021" @default.
- W3136241689 type Work @default.
- W3136241689 sameAs 3136241689 @default.
- W3136241689 citedByCount "0" @default.
- W3136241689 crossrefType "journal-article" @default.
- W3136241689 hasAuthorship W3136241689A5002683576 @default.
- W3136241689 hasAuthorship W3136241689A5017551961 @default.
- W3136241689 hasAuthorship W3136241689A5065296916 @default.
- W3136241689 hasAuthorship W3136241689A5071909155 @default.
- W3136241689 hasAuthorship W3136241689A5078070899 @default.
- W3136241689 hasAuthorship W3136241689A5085297646 @default.
- W3136241689 hasBestOaLocation W31362416891 @default.
- W3136241689 hasConcept C104317684 @default.
- W3136241689 hasConcept C116834253 @default.
- W3136241689 hasConcept C119857082 @default.
- W3136241689 hasConcept C121608353 @default.
- W3136241689 hasConcept C12267149 @default.
- W3136241689 hasConcept C124535831 @default.
- W3136241689 hasConcept C145059251 @default.
- W3136241689 hasConcept C154945302 @default.
- W3136241689 hasConcept C2776214188 @default.
- W3136241689 hasConcept C2780192828 @default.
- W3136241689 hasConcept C41008148 @default.
- W3136241689 hasConcept C46111723 @default.
- W3136241689 hasConcept C54355233 @default.
- W3136241689 hasConcept C59822182 @default.
- W3136241689 hasConcept C60644358 @default.