Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136244248> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3136244248 abstract "Electronic health records (EHR) consists of broad, numerous and erratic accesses through self-authorizations and brake the glass scenarios. This is to fulfil the availability aspect of the the CIA (confidentiality, integrity) due to the time sensitive nature in healthcare especially during health emergency situations. Adversaries can use this as opportunity to illegitimately access patients records, thereby, compromising the entire EHR system.To avert this, a comparative analysis of machine learning classification methods was conducted with simulated EHR logs. The methods which were compared are Multinomial Naive Bayes(multnb), Bernoulli Naive Bayes (bernnb), Support Vector Machine (svm), Neural Network (nn), K-Nearest Neighbours(knn), Logistic Regression (lr), Random Forest (rf), and Decision Tree (dt).The experiment results show that all of the machine learning models used in this work performed very well for the role classification task but, Decision Tree (dt) and Random Forrest (rf) obtained the best result among all of the methods with the same accuracy value of 0.889 on all three datasets. For the anomaly detection task, generally, our proposed approach obtained a high recall and accuracy but low precision and F1-score. Soft Classification approach performed better than the Hard Classification approach. The best performance was achieved with Bernoulli Naive Bayes with none normalised data, with an F1-score of 0.893." @default.
- W3136244248 created "2021-03-29" @default.
- W3136244248 creator A5008690111 @default.
- W3136244248 creator A5075952181 @default.
- W3136244248 creator A5084188534 @default.
- W3136244248 date "2020-12-10" @default.
- W3136244248 modified "2023-09-23" @default.
- W3136244248 title "Comparative analysis of machine learning methods for analyzing security practice in electronic health records’ logs" @default.
- W3136244248 cites W2018049374 @default.
- W3136244248 cites W2026026089 @default.
- W3136244248 cites W2056765730 @default.
- W3136244248 cites W2091679618 @default.
- W3136244248 cites W2109933556 @default.
- W3136244248 cites W2112066329 @default.
- W3136244248 cites W2115470731 @default.
- W3136244248 cites W2117818136 @default.
- W3136244248 cites W2135414215 @default.
- W3136244248 cites W2155727275 @default.
- W3136244248 cites W2357516827 @default.
- W3136244248 cites W2599180620 @default.
- W3136244248 cites W2619560268 @default.
- W3136244248 cites W2775189568 @default.
- W3136244248 cites W2920948679 @default.
- W3136244248 cites W2922409314 @default.
- W3136244248 cites W2938414802 @default.
- W3136244248 cites W2959053930 @default.
- W3136244248 cites W3006725007 @default.
- W3136244248 cites W4205431832 @default.
- W3136244248 cites W657411145 @default.
- W3136244248 doi "https://doi.org/10.1109/bigdata50022.2020.9378353" @default.
- W3136244248 hasPublicationYear "2020" @default.
- W3136244248 type Work @default.
- W3136244248 sameAs 3136244248 @default.
- W3136244248 citedByCount "2" @default.
- W3136244248 countsByYear W31362442482021 @default.
- W3136244248 countsByYear W31362442482022 @default.
- W3136244248 crossrefType "proceedings-article" @default.
- W3136244248 hasAuthorship W3136244248A5008690111 @default.
- W3136244248 hasAuthorship W3136244248A5075952181 @default.
- W3136244248 hasAuthorship W3136244248A5084188534 @default.
- W3136244248 hasConcept C154945302 @default.
- W3136244248 hasConcept C160735492 @default.
- W3136244248 hasConcept C162324750 @default.
- W3136244248 hasConcept C2522767166 @default.
- W3136244248 hasConcept C3019952477 @default.
- W3136244248 hasConcept C41008148 @default.
- W3136244248 hasConcept C50522688 @default.
- W3136244248 hasConceptScore W3136244248C154945302 @default.
- W3136244248 hasConceptScore W3136244248C160735492 @default.
- W3136244248 hasConceptScore W3136244248C162324750 @default.
- W3136244248 hasConceptScore W3136244248C2522767166 @default.
- W3136244248 hasConceptScore W3136244248C3019952477 @default.
- W3136244248 hasConceptScore W3136244248C41008148 @default.
- W3136244248 hasConceptScore W3136244248C50522688 @default.
- W3136244248 hasLocation W31362442481 @default.
- W3136244248 hasOpenAccess W3136244248 @default.
- W3136244248 hasPrimaryLocation W31362442481 @default.
- W3136244248 hasRelatedWork W1996408511 @default.
- W3136244248 hasRelatedWork W2147236132 @default.
- W3136244248 hasRelatedWork W2296023454 @default.
- W3136244248 hasRelatedWork W2345192301 @default.
- W3136244248 hasRelatedWork W2535584405 @default.
- W3136244248 hasRelatedWork W2577361510 @default.
- W3136244248 hasRelatedWork W2737122700 @default.
- W3136244248 hasRelatedWork W2810759579 @default.
- W3136244248 hasRelatedWork W2949866548 @default.
- W3136244248 hasRelatedWork W4296902923 @default.
- W3136244248 isParatext "false" @default.
- W3136244248 isRetracted "false" @default.
- W3136244248 magId "3136244248" @default.
- W3136244248 workType "article" @default.