Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136244472> ?p ?o ?g. }
- W3136244472 endingPage "7155" @default.
- W3136244472 startingPage "7142" @default.
- W3136244472 abstract "Predicting urban traffic flow is a challenging task, due to the complicated spatio-temporal dependencies on traffic networks. Urban traffic flow usually has both short-term neighboring and long-term periodic temporal dependencies. It is also noticed that the spatial correlations over different traffic nodes are both local and non-local. What’s more, the traffic flow is affected by various external factors. To capture the non-local spatial correlations, we propose a Dilated Attentional Graph Convolution (DAGC). The DAGC utilizes a dilated graph convolution kernel to expand the nodes’ receptive field and exploit multi-order neighborhood. Technically, the lower-order neighborhood corresponds to local spatial dependencies, while the higher-order neighborhood corresponds to non-local spatial dependencies between nodes. Based on DAGC, a Multi-Source Spatio-Temporal Network (MS-Net) is designed, which suffices to integrate long-range historical traffic data as well as multi-modal external information. MS-Net consists of four components: a spatial feature extraction module, a temporal feature fusion module, an external factors embedding module, and a multi-source data fusion module. Extensive experiments on three real traffic datasets demonstrates that the proposed model performs well on both the public transportation networks, road networks, and can handle large-scale traffic networks in particular the Beijing bus network which has more than 4,000 traffic nodes." @default.
- W3136244472 created "2021-03-29" @default.
- W3136244472 creator A5011477215 @default.
- W3136244472 creator A5038083485 @default.
- W3136244472 creator A5040673285 @default.
- W3136244472 creator A5063574586 @default.
- W3136244472 creator A5072815126 @default.
- W3136244472 creator A5073083818 @default.
- W3136244472 creator A5073786224 @default.
- W3136244472 date "2022-07-01" @default.
- W3136244472 modified "2023-10-17" @default.
- W3136244472 title "MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction" @default.
- W3136244472 cites W1504901460 @default.
- W3136244472 cites W1973943669 @default.
- W3136244472 cites W1983483726 @default.
- W3136244472 cites W2004353783 @default.
- W3136244472 cites W2011504567 @default.
- W3136244472 cites W2013758377 @default.
- W3136244472 cites W2021153764 @default.
- W3136244472 cites W2030525099 @default.
- W3136244472 cites W2040297119 @default.
- W3136244472 cites W2049952439 @default.
- W3136244472 cites W2070995496 @default.
- W3136244472 cites W2077537883 @default.
- W3136244472 cites W2090192376 @default.
- W3136244472 cites W2101022200 @default.
- W3136244472 cites W2108196201 @default.
- W3136244472 cites W2111688141 @default.
- W3136244472 cites W2123099218 @default.
- W3136244472 cites W2131819535 @default.
- W3136244472 cites W2132711183 @default.
- W3136244472 cites W2141778623 @default.
- W3136244472 cites W2160507653 @default.
- W3136244472 cites W2167695003 @default.
- W3136244472 cites W2171234954 @default.
- W3136244472 cites W2194775991 @default.
- W3136244472 cites W2460404912 @default.
- W3136244472 cites W2528639018 @default.
- W3136244472 cites W2558460151 @default.
- W3136244472 cites W2573587735 @default.
- W3136244472 cites W2624190409 @default.
- W3136244472 cites W2695427614 @default.
- W3136244472 cites W2782920454 @default.
- W3136244472 cites W2788134583 @default.
- W3136244472 cites W2807894308 @default.
- W3136244472 cites W2884738862 @default.
- W3136244472 cites W2890385714 @default.
- W3136244472 cites W2903871660 @default.
- W3136244472 cites W2914289538 @default.
- W3136244472 cites W2922146383 @default.
- W3136244472 cites W2942843559 @default.
- W3136244472 cites W2950817888 @default.
- W3136244472 cites W2954284176 @default.
- W3136244472 cites W2962790412 @default.
- W3136244472 cites W2963076818 @default.
- W3136244472 cites W2963881378 @default.
- W3136244472 cites W2964051675 @default.
- W3136244472 cites W2965399951 @default.
- W3136244472 cites W2990045899 @default.
- W3136244472 cites W3034944009 @default.
- W3136244472 cites W3103720336 @default.
- W3136244472 doi "https://doi.org/10.1109/tits.2021.3067024" @default.
- W3136244472 hasPublicationYear "2022" @default.
- W3136244472 type Work @default.
- W3136244472 sameAs 3136244472 @default.
- W3136244472 citedByCount "9" @default.
- W3136244472 countsByYear W31362444722022 @default.
- W3136244472 countsByYear W31362444722023 @default.
- W3136244472 crossrefType "journal-article" @default.
- W3136244472 hasAuthorship W3136244472A5011477215 @default.
- W3136244472 hasAuthorship W3136244472A5038083485 @default.
- W3136244472 hasAuthorship W3136244472A5040673285 @default.
- W3136244472 hasAuthorship W3136244472A5063574586 @default.
- W3136244472 hasAuthorship W3136244472A5072815126 @default.
- W3136244472 hasAuthorship W3136244472A5073083818 @default.
- W3136244472 hasAuthorship W3136244472A5073786224 @default.
- W3136244472 hasConcept C114809511 @default.
- W3136244472 hasConcept C124101348 @default.
- W3136244472 hasConcept C126255220 @default.
- W3136244472 hasConcept C165696696 @default.
- W3136244472 hasConcept C176715033 @default.
- W3136244472 hasConcept C207512268 @default.
- W3136244472 hasConcept C31258907 @default.
- W3136244472 hasConcept C33923547 @default.
- W3136244472 hasConcept C38652104 @default.
- W3136244472 hasConcept C41008148 @default.
- W3136244472 hasConcept C79403827 @default.
- W3136244472 hasConceptScore W3136244472C114809511 @default.
- W3136244472 hasConceptScore W3136244472C124101348 @default.
- W3136244472 hasConceptScore W3136244472C126255220 @default.
- W3136244472 hasConceptScore W3136244472C165696696 @default.
- W3136244472 hasConceptScore W3136244472C176715033 @default.
- W3136244472 hasConceptScore W3136244472C207512268 @default.
- W3136244472 hasConceptScore W3136244472C31258907 @default.
- W3136244472 hasConceptScore W3136244472C33923547 @default.
- W3136244472 hasConceptScore W3136244472C38652104 @default.
- W3136244472 hasConceptScore W3136244472C41008148 @default.
- W3136244472 hasConceptScore W3136244472C79403827 @default.