Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136244785> ?p ?o ?g. }
- W3136244785 abstract "Abstract 1. Sudden transitions from one stable state to a contrasting state occur in complex systems ranging from the collapse of ecological populations to climatic change, with much recent work seeking to develop methods to predict these unexpected transitions from signals in time series data. However, previously developed methods vary widely in their reliability, and fail to classify whether an approaching collapse might be catastrophic (and hard to reverse) or non-catastrophic (easier to reverse) with significant implications for how such systems are managed. 2. Here we develop a novel detection method, using simulated outcomes from a range of simple mathematical models with varying nonlinearity to train a deep neural network to detect critical transitions - the Early Warning Signal Network (EWSNet). 3. We demonstrate that this neural network (EWSNet), trained on simulated data with minimal assumptions about the underlying structure of the system, can predict with high reliability observed real-world transitions in ecological and climatological data. Importantly, our model appears to capture latent properties in time series missed by previous warning signals approaches, allowing us to not only detect if a transition is approaching but critically whether the collapse will be catastrophic or non-catastrophic. 4. The EWSNet can flag a critical transition with unprecedented accuracy, overcoming some of the major limitations of traditional methods based on phenomena such as Critical Slowing Down. These novel properties mean EWSNet has the potential to serve as a universal indicator of transitions across a broad spectrum of complex systems, without requiring information on the structure of the system being monitored. Our work highlights the practicality of deep learning for addressing further questions pertaining to ecosystem collapse and have much broader management implications." @default.
- W3136244785 created "2021-03-29" @default.
- W3136244785 creator A5011068035 @default.
- W3136244785 creator A5040434496 @default.
- W3136244785 creator A5058640835 @default.
- W3136244785 creator A5066175720 @default.
- W3136244785 creator A5072163605 @default.
- W3136244785 date "2021-03-16" @default.
- W3136244785 modified "2023-09-25" @default.
- W3136244785 title "Machine learning methods trained on simple models can predict critical transitions in complex natural systems" @default.
- W3136244785 cites W1498026065 @default.
- W3136244785 cites W1545410837 @default.
- W3136244785 cites W1883925947 @default.
- W3136244785 cites W2011866841 @default.
- W3136244785 cites W2041471962 @default.
- W3136244785 cites W2042092205 @default.
- W3136244785 cites W2045254026 @default.
- W3136244785 cites W2049168941 @default.
- W3136244785 cites W2050335144 @default.
- W3136244785 cites W2058731966 @default.
- W3136244785 cites W2064675550 @default.
- W3136244785 cites W2066648930 @default.
- W3136244785 cites W2110331506 @default.
- W3136244785 cites W2116199452 @default.
- W3136244785 cites W2121613907 @default.
- W3136244785 cites W2130435784 @default.
- W3136244785 cites W2136498527 @default.
- W3136244785 cites W2148377623 @default.
- W3136244785 cites W2153268540 @default.
- W3136244785 cites W2169715400 @default.
- W3136244785 cites W2170330538 @default.
- W3136244785 cites W2171351474 @default.
- W3136244785 cites W2336589732 @default.
- W3136244785 cites W2518595289 @default.
- W3136244785 cites W2531147647 @default.
- W3136244785 cites W2669745156 @default.
- W3136244785 cites W2754051771 @default.
- W3136244785 cites W2769234066 @default.
- W3136244785 cites W2914699317 @default.
- W3136244785 cites W2951485895 @default.
- W3136244785 cites W2990024397 @default.
- W3136244785 cites W3098772815 @default.
- W3136244785 cites W3100575704 @default.
- W3136244785 cites W4299870202 @default.
- W3136244785 doi "https://doi.org/10.1101/2021.03.15.435556" @default.
- W3136244785 hasPublicationYear "2021" @default.
- W3136244785 type Work @default.
- W3136244785 sameAs 3136244785 @default.
- W3136244785 citedByCount "3" @default.
- W3136244785 countsByYear W31362447852022 @default.
- W3136244785 countsByYear W31362447852023 @default.
- W3136244785 crossrefType "posted-content" @default.
- W3136244785 hasAuthorship W3136244785A5011068035 @default.
- W3136244785 hasAuthorship W3136244785A5040434496 @default.
- W3136244785 hasAuthorship W3136244785A5058640835 @default.
- W3136244785 hasAuthorship W3136244785A5066175720 @default.
- W3136244785 hasAuthorship W3136244785A5072163605 @default.
- W3136244785 hasBestOaLocation W31362447851 @default.
- W3136244785 hasConcept C104317684 @default.
- W3136244785 hasConcept C111472728 @default.
- W3136244785 hasConcept C112987892 @default.
- W3136244785 hasConcept C119857082 @default.
- W3136244785 hasConcept C121332964 @default.
- W3136244785 hasConcept C127313418 @default.
- W3136244785 hasConcept C136764020 @default.
- W3136244785 hasConcept C138885662 @default.
- W3136244785 hasConcept C143724316 @default.
- W3136244785 hasConcept C151730666 @default.
- W3136244785 hasConcept C154945302 @default.
- W3136244785 hasConcept C163258240 @default.
- W3136244785 hasConcept C185592680 @default.
- W3136244785 hasConcept C194232998 @default.
- W3136244785 hasConcept C2780586882 @default.
- W3136244785 hasConcept C29825287 @default.
- W3136244785 hasConcept C34947359 @default.
- W3136244785 hasConcept C41008148 @default.
- W3136244785 hasConcept C43214815 @default.
- W3136244785 hasConcept C47822265 @default.
- W3136244785 hasConcept C50644808 @default.
- W3136244785 hasConcept C55493867 @default.
- W3136244785 hasConcept C62520636 @default.
- W3136244785 hasConcept C76155785 @default.
- W3136244785 hasConcept C97355855 @default.
- W3136244785 hasConceptScore W3136244785C104317684 @default.
- W3136244785 hasConceptScore W3136244785C111472728 @default.
- W3136244785 hasConceptScore W3136244785C112987892 @default.
- W3136244785 hasConceptScore W3136244785C119857082 @default.
- W3136244785 hasConceptScore W3136244785C121332964 @default.
- W3136244785 hasConceptScore W3136244785C127313418 @default.
- W3136244785 hasConceptScore W3136244785C136764020 @default.
- W3136244785 hasConceptScore W3136244785C138885662 @default.
- W3136244785 hasConceptScore W3136244785C143724316 @default.
- W3136244785 hasConceptScore W3136244785C151730666 @default.
- W3136244785 hasConceptScore W3136244785C154945302 @default.
- W3136244785 hasConceptScore W3136244785C163258240 @default.
- W3136244785 hasConceptScore W3136244785C185592680 @default.
- W3136244785 hasConceptScore W3136244785C194232998 @default.
- W3136244785 hasConceptScore W3136244785C2780586882 @default.
- W3136244785 hasConceptScore W3136244785C29825287 @default.
- W3136244785 hasConceptScore W3136244785C34947359 @default.