Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136247676> ?p ?o ?g. }
- W3136247676 endingPage "879" @default.
- W3136247676 startingPage "852" @default.
- W3136247676 abstract "Global warming increases the frequency and intensity of extreme rainfall, putting many areas at risk of landslides. Landslide susceptibility assessment is essential to understand the threats and to predict, prevent, and mitigate landslides. In this study, a soil landslide inventory was constructed based on satellite images, topological maps, and extensive field studies. Subsequently, eight different GIS layers, which were geomorphology, elevation, slope angle, slope aspect, slope structure, slope curvature, antecedent rainfall, and cumulative rainfall on 16 September, were produced as control factors of soil planar slides for the susceptibility mapping. Landslide susceptibility mapping was performed using two different methods, logistic regression model and backpropagation (BP) neural network. Landslide susceptibility in the study area is divided into four levels, which are high, moderate, low, and no susceptibility in both the logistic regression model and the BP neural network model. In both the two models, most of the observed soil planar slides were located in areas with high or moderate susceptibility. For the logistic regression model, total 605 soil planar slides locate in the area with high susceptibility, of which the area is 800.56 km2, accounting for 40.31% of the total area. Finally, the validation of two models was evaluated. The AUC value of the logistic regression model was 0.878 and the parameters of BP neural network has the correlation coefficient of 0.880, which shows the two models are both reliable and reasonable for predicting the spatial susceptibility of soil planar slides. According to field checks, the BP neural network model is verified to have more accurate spatial prediction performance than the logistic regression model." @default.
- W3136247676 created "2021-03-29" @default.
- W3136247676 creator A5016535312 @default.
- W3136247676 creator A5022485033 @default.
- W3136247676 creator A5025834233 @default.
- W3136247676 creator A5028490219 @default.
- W3136247676 creator A5035547934 @default.
- W3136247676 creator A5041001060 @default.
- W3136247676 creator A5064878147 @default.
- W3136247676 date "2021-01-01" @default.
- W3136247676 modified "2023-10-17" @default.
- W3136247676 title "GIS-based soil planar slide susceptibility mapping using logistic regression and neural networks: a typical red mudstone area in southwest China" @default.
- W3136247676 cites W1862224285 @default.
- W3136247676 cites W1919233617 @default.
- W3136247676 cites W1965765785 @default.
- W3136247676 cites W1967335776 @default.
- W3136247676 cites W1973249074 @default.
- W3136247676 cites W1978784463 @default.
- W3136247676 cites W1979486410 @default.
- W3136247676 cites W1989158271 @default.
- W3136247676 cites W1990748933 @default.
- W3136247676 cites W1991104605 @default.
- W3136247676 cites W1993025283 @default.
- W3136247676 cites W2000380895 @default.
- W3136247676 cites W2000462249 @default.
- W3136247676 cites W2001535969 @default.
- W3136247676 cites W2002139005 @default.
- W3136247676 cites W2005777366 @default.
- W3136247676 cites W2007951435 @default.
- W3136247676 cites W2009093518 @default.
- W3136247676 cites W2020062384 @default.
- W3136247676 cites W2021693202 @default.
- W3136247676 cites W2022724931 @default.
- W3136247676 cites W2023562522 @default.
- W3136247676 cites W2029816621 @default.
- W3136247676 cites W2031790558 @default.
- W3136247676 cites W2042229599 @default.
- W3136247676 cites W2042951326 @default.
- W3136247676 cites W2048352020 @default.
- W3136247676 cites W2061293102 @default.
- W3136247676 cites W2064848612 @default.
- W3136247676 cites W2072919404 @default.
- W3136247676 cites W2077292227 @default.
- W3136247676 cites W2082622325 @default.
- W3136247676 cites W2088730795 @default.
- W3136247676 cites W2089314377 @default.
- W3136247676 cites W2097556953 @default.
- W3136247676 cites W2101628692 @default.
- W3136247676 cites W2103540160 @default.
- W3136247676 cites W2107108409 @default.
- W3136247676 cites W2114999545 @default.
- W3136247676 cites W2120630093 @default.
- W3136247676 cites W2137034166 @default.
- W3136247676 cites W2147555471 @default.
- W3136247676 cites W2162196186 @default.
- W3136247676 cites W2277762844 @default.
- W3136247676 cites W2279863694 @default.
- W3136247676 cites W2344815375 @default.
- W3136247676 cites W2478414316 @default.
- W3136247676 cites W2531169012 @default.
- W3136247676 cites W2550708546 @default.
- W3136247676 cites W2557799464 @default.
- W3136247676 cites W2563305883 @default.
- W3136247676 cites W2615890952 @default.
- W3136247676 cites W2626844388 @default.
- W3136247676 cites W2791665776 @default.
- W3136247676 cites W2794007240 @default.
- W3136247676 cites W2898517807 @default.
- W3136247676 cites W2922361723 @default.
- W3136247676 cites W2953959218 @default.
- W3136247676 cites W2954464033 @default.
- W3136247676 cites W2994818485 @default.
- W3136247676 cites W2996089053 @default.
- W3136247676 cites W3000401156 @default.
- W3136247676 cites W3087095181 @default.
- W3136247676 cites W954498530 @default.
- W3136247676 doi "https://doi.org/10.1080/19475705.2021.1896584" @default.
- W3136247676 hasPublicationYear "2021" @default.
- W3136247676 type Work @default.
- W3136247676 sameAs 3136247676 @default.
- W3136247676 citedByCount "4" @default.
- W3136247676 countsByYear W31362476762021 @default.
- W3136247676 countsByYear W31362476762022 @default.
- W3136247676 crossrefType "journal-article" @default.
- W3136247676 hasAuthorship W3136247676A5016535312 @default.
- W3136247676 hasAuthorship W3136247676A5022485033 @default.
- W3136247676 hasAuthorship W3136247676A5025834233 @default.
- W3136247676 hasAuthorship W3136247676A5028490219 @default.
- W3136247676 hasAuthorship W3136247676A5035547934 @default.
- W3136247676 hasAuthorship W3136247676A5041001060 @default.
- W3136247676 hasAuthorship W3136247676A5064878147 @default.
- W3136247676 hasBestOaLocation W31362476761 @default.
- W3136247676 hasConcept C105795698 @default.
- W3136247676 hasConcept C114793014 @default.
- W3136247676 hasConcept C127313418 @default.
- W3136247676 hasConcept C151956035 @default.
- W3136247676 hasConcept C154945302 @default.
- W3136247676 hasConcept C159390177 @default.