Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136252605> ?p ?o ?g. }
- W3136252605 abstract "Introduction: Within a few months coronavirus disease 2019 (COVID-19) evolved into a pandemic causing millions of cases worldwide, but it remains challenging to diagnose the disease in a timely fashion in the emergency department (ED). In this study we aimed to construct machine-learning (ML) models to predict severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection based on the clinical features of patients visiting an ED during the early COVID-19 pandemic.Methods: We retrospectively collected the data of all patients who received reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 at the ED of Baylor Scott & White All Saints Medical Center, Fort Worth, from February 23–May 12, 2020. The variables collected included patient demographics, ED triage data, clinical symptoms, and past medical history. The primary outcome was the confirmed diagnosis of COVID-19 (or SARS-CoV-2 infection) by a positive RT-PCR test result for SARS-CoV-2, and was used as the label for ML tasks. We used univariate analyses for feature selection, and variables with P<0.1 were selected for model construction. Samples were split into training and testing cohorts on a 60:40 ratio chronologically. We tried various ML algorithms to construct the best predictive model, and we evaluated performances with the area under the receiver operating characteristic curve (AUC) in the testing cohort.Results: A total of 580 ED patients were tested for SARS-CoV-2 during the study periods, and 98 (16.9%) were identified as having the SARS-CoV-2 infection based on the RT-PCR results. Univariate analyses selected 21 features for model construction. We assessed three ML methods for performance: of the three methods, random forest outperformed the others with the best AUC result (0.86), followed by gradient boosting (0.83) and extra trees classifier (0.82).Conclusion: This study shows that it is feasible to use ML models as an initial screening tool for identifying patients with SARS-CoV-2 infection. Further validation will be necessary to determine how effectively this prediction model can be used prospectively in clinical practice." @default.
- W3136252605 created "2021-03-29" @default.
- W3136252605 creator A5015280328 @default.
- W3136252605 creator A5022717674 @default.
- W3136252605 creator A5025804874 @default.
- W3136252605 creator A5033716599 @default.
- W3136252605 creator A5034998478 @default.
- W3136252605 creator A5050613037 @default.
- W3136252605 creator A5062496606 @default.
- W3136252605 creator A5070683709 @default.
- W3136252605 creator A5079931660 @default.
- W3136252605 creator A5080445504 @default.
- W3136252605 creator A5087454198 @default.
- W3136252605 date "2021-03-12" @default.
- W3136252605 modified "2023-09-25" @default.
- W3136252605 title "Clinical Features of Emergency Department Patients from Early COVID-19 Pandemic that Predict SARS-CoV-2 Infection: Machine-learning Approach" @default.
- W3136252605 cites W2157222645 @default.
- W3136252605 cites W3001118548 @default.
- W3136252605 cites W3001897055 @default.
- W3136252605 cites W3002108456 @default.
- W3136252605 cites W3003668884 @default.
- W3136252605 cites W3007678840 @default.
- W3136252605 cites W3008090866 @default.
- W3136252605 cites W3009120067 @default.
- W3136252605 cites W3012320055 @default.
- W3136252605 cites W3012327600 @default.
- W3136252605 cites W3012715192 @default.
- W3136252605 cites W3015560218 @default.
- W3136252605 cites W3015664205 @default.
- W3136252605 cites W3016610966 @default.
- W3136252605 cites W3017412292 @default.
- W3136252605 cites W3023519397 @default.
- W3136252605 cites W3024682365 @default.
- W3136252605 cites W3025948831 @default.
- W3136252605 cites W3028249840 @default.
- W3136252605 cites W3031443331 @default.
- W3136252605 cites W3039774901 @default.
- W3136252605 cites W3125645332 @default.
- W3136252605 cites W3130958407 @default.
- W3136252605 cites W3165656738 @default.
- W3136252605 doi "https://doi.org/10.5811/westjem.2020.12.49370" @default.
- W3136252605 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7972393" @default.
- W3136252605 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33856307" @default.
- W3136252605 hasPublicationYear "2021" @default.
- W3136252605 type Work @default.
- W3136252605 sameAs 3136252605 @default.
- W3136252605 citedByCount "6" @default.
- W3136252605 countsByYear W31362526052021 @default.
- W3136252605 countsByYear W31362526052022 @default.
- W3136252605 countsByYear W31362526052023 @default.
- W3136252605 crossrefType "journal-article" @default.
- W3136252605 hasAuthorship W3136252605A5015280328 @default.
- W3136252605 hasAuthorship W3136252605A5022717674 @default.
- W3136252605 hasAuthorship W3136252605A5025804874 @default.
- W3136252605 hasAuthorship W3136252605A5033716599 @default.
- W3136252605 hasAuthorship W3136252605A5034998478 @default.
- W3136252605 hasAuthorship W3136252605A5050613037 @default.
- W3136252605 hasAuthorship W3136252605A5062496606 @default.
- W3136252605 hasAuthorship W3136252605A5070683709 @default.
- W3136252605 hasAuthorship W3136252605A5079931660 @default.
- W3136252605 hasAuthorship W3136252605A5080445504 @default.
- W3136252605 hasAuthorship W3136252605A5087454198 @default.
- W3136252605 hasBestOaLocation W31362526051 @default.
- W3136252605 hasConcept C118552586 @default.
- W3136252605 hasConcept C126322002 @default.
- W3136252605 hasConcept C144301174 @default.
- W3136252605 hasConcept C167135981 @default.
- W3136252605 hasConcept C194828623 @default.
- W3136252605 hasConcept C2777120189 @default.
- W3136252605 hasConcept C2779134260 @default.
- W3136252605 hasConcept C2780724011 @default.
- W3136252605 hasConcept C3007834351 @default.
- W3136252605 hasConcept C3008058167 @default.
- W3136252605 hasConcept C38180746 @default.
- W3136252605 hasConcept C524204448 @default.
- W3136252605 hasConcept C58471807 @default.
- W3136252605 hasConcept C71924100 @default.
- W3136252605 hasConcept C72563966 @default.
- W3136252605 hasConcept C89623803 @default.
- W3136252605 hasConceptScore W3136252605C118552586 @default.
- W3136252605 hasConceptScore W3136252605C126322002 @default.
- W3136252605 hasConceptScore W3136252605C144301174 @default.
- W3136252605 hasConceptScore W3136252605C167135981 @default.
- W3136252605 hasConceptScore W3136252605C194828623 @default.
- W3136252605 hasConceptScore W3136252605C2777120189 @default.
- W3136252605 hasConceptScore W3136252605C2779134260 @default.
- W3136252605 hasConceptScore W3136252605C2780724011 @default.
- W3136252605 hasConceptScore W3136252605C3007834351 @default.
- W3136252605 hasConceptScore W3136252605C3008058167 @default.
- W3136252605 hasConceptScore W3136252605C38180746 @default.
- W3136252605 hasConceptScore W3136252605C524204448 @default.
- W3136252605 hasConceptScore W3136252605C58471807 @default.
- W3136252605 hasConceptScore W3136252605C71924100 @default.
- W3136252605 hasConceptScore W3136252605C72563966 @default.
- W3136252605 hasConceptScore W3136252605C89623803 @default.
- W3136252605 hasIssue "2" @default.
- W3136252605 hasLocation W31362526051 @default.
- W3136252605 hasLocation W31362526052 @default.
- W3136252605 hasLocation W31362526053 @default.
- W3136252605 hasOpenAccess W3136252605 @default.