Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136256577> ?p ?o ?g. }
- W3136256577 abstract "Automatic detection of low-magnitude earthquakes has become an increasingly important research topic in recent years due to a sharp increase in induced seismicity around the globe. The detection of low-magnitude seismic events is essential for microseismic monitoring of hydraulic fracturing, carbon capture and storage, and geothermal operations for hazard detection and mitigation. Moreover, the detection of micro-earthquakes is crucial to understand the underlying mechanisms of larger earthquakes. Various algorithms, including deep learning methods, have been proposed over the years to detect such low-magnitude events. However, there is still a need for improving the robustness of these methods in discriminating between local sources of noise and weak seismic events. In this study, we propose a convolutional neural network (CNN) to detect seismic events from shallow borehole stations in Groningen, the Netherlands. We train a CNN model to detect low-magnitude earthquakes, harnessing the multi-level sensor configuration of the G-network in Groningen. Each G-network station contains four geophones at depths of 50, 100, 150, and 200 meters. Unlike prior deep learning approaches that use 3-component seismic records only at a single sensor level, we use records from the entire borehole as one training example. This allows us to train the CNN model using moveout patterns of the energy traveling across the borehole sensors to discriminate between events originating in the subsurface and local noise arriving from the surface. We compare the prediction accuracy of our trained CNN model to that of the STA/LTA and template matching algorithms on a two-month continuous record. We demonstrate that the CNN model shows significantly better performance than STA/LTA and template matching in detecting new events missing from the catalog and minimizing false detections." @default.
- W3136256577 created "2021-03-29" @default.
- W3136256577 creator A5020405393 @default.
- W3136256577 creator A5034004423 @default.
- W3136256577 creator A5034455701 @default.
- W3136256577 creator A5054922583 @default.
- W3136256577 creator A5082388493 @default.
- W3136256577 date "2021-03-14" @default.
- W3136256577 modified "2023-09-27" @default.
- W3136256577 title "Deep learning for low-magnitude earthquake detection on a multi-level sensor network" @default.
- W3136256577 cites W1686810756 @default.
- W3136256577 cites W1970831581 @default.
- W3136256577 cites W2097117768 @default.
- W3136256577 cites W2103212315 @default.
- W3136256577 cites W2117731089 @default.
- W3136256577 cites W2149592092 @default.
- W3136256577 cites W2154788232 @default.
- W3136256577 cites W2252531811 @default.
- W3136256577 cites W2528961483 @default.
- W3136256577 cites W2749056081 @default.
- W3136256577 cites W2762410434 @default.
- W3136256577 cites W2766736793 @default.
- W3136256577 cites W2789985587 @default.
- W3136256577 cites W2889693833 @default.
- W3136256577 cites W2891520470 @default.
- W3136256577 cites W2895546528 @default.
- W3136256577 cites W2907292342 @default.
- W3136256577 cites W2919115771 @default.
- W3136256577 cites W2945763408 @default.
- W3136256577 cites W3037053013 @default.
- W3136256577 cites W3047855151 @default.
- W3136256577 hasPublicationYear "2021" @default.
- W3136256577 type Work @default.
- W3136256577 sameAs 3136256577 @default.
- W3136256577 citedByCount "0" @default.
- W3136256577 crossrefType "posted-content" @default.
- W3136256577 hasAuthorship W3136256577A5020405393 @default.
- W3136256577 hasAuthorship W3136256577A5034004423 @default.
- W3136256577 hasAuthorship W3136256577A5034455701 @default.
- W3136256577 hasAuthorship W3136256577A5054922583 @default.
- W3136256577 hasAuthorship W3136256577A5082388493 @default.
- W3136256577 hasConcept C108583219 @default.
- W3136256577 hasConcept C115961682 @default.
- W3136256577 hasConcept C121332964 @default.
- W3136256577 hasConcept C126691448 @default.
- W3136256577 hasConcept C127313418 @default.
- W3136256577 hasConcept C1276947 @default.
- W3136256577 hasConcept C150560799 @default.
- W3136256577 hasConcept C154945302 @default.
- W3136256577 hasConcept C165205528 @default.
- W3136256577 hasConcept C187320778 @default.
- W3136256577 hasConcept C2780942248 @default.
- W3136256577 hasConcept C41008148 @default.
- W3136256577 hasConcept C54187759 @default.
- W3136256577 hasConcept C7266685 @default.
- W3136256577 hasConcept C81363708 @default.
- W3136256577 hasConcept C83176761 @default.
- W3136256577 hasConcept C99498987 @default.
- W3136256577 hasConceptScore W3136256577C108583219 @default.
- W3136256577 hasConceptScore W3136256577C115961682 @default.
- W3136256577 hasConceptScore W3136256577C121332964 @default.
- W3136256577 hasConceptScore W3136256577C126691448 @default.
- W3136256577 hasConceptScore W3136256577C127313418 @default.
- W3136256577 hasConceptScore W3136256577C1276947 @default.
- W3136256577 hasConceptScore W3136256577C150560799 @default.
- W3136256577 hasConceptScore W3136256577C154945302 @default.
- W3136256577 hasConceptScore W3136256577C165205528 @default.
- W3136256577 hasConceptScore W3136256577C187320778 @default.
- W3136256577 hasConceptScore W3136256577C2780942248 @default.
- W3136256577 hasConceptScore W3136256577C41008148 @default.
- W3136256577 hasConceptScore W3136256577C54187759 @default.
- W3136256577 hasConceptScore W3136256577C7266685 @default.
- W3136256577 hasConceptScore W3136256577C81363708 @default.
- W3136256577 hasConceptScore W3136256577C83176761 @default.
- W3136256577 hasConceptScore W3136256577C99498987 @default.
- W3136256577 hasLocation W31362565771 @default.
- W3136256577 hasOpenAccess W3136256577 @default.
- W3136256577 hasPrimaryLocation W31362565771 @default.
- W3136256577 hasRelatedWork W2208968870 @default.
- W3136256577 hasRelatedWork W2577361627 @default.
- W3136256577 hasRelatedWork W2786478325 @default.
- W3136256577 hasRelatedWork W2798961812 @default.
- W3136256577 hasRelatedWork W2838793882 @default.
- W3136256577 hasRelatedWork W2846018618 @default.
- W3136256577 hasRelatedWork W2883142087 @default.
- W3136256577 hasRelatedWork W2891038491 @default.
- W3136256577 hasRelatedWork W2895546528 @default.
- W3136256577 hasRelatedWork W2912075062 @default.
- W3136256577 hasRelatedWork W2950721588 @default.
- W3136256577 hasRelatedWork W2983893818 @default.
- W3136256577 hasRelatedWork W3002382953 @default.
- W3136256577 hasRelatedWork W3002866353 @default.
- W3136256577 hasRelatedWork W3047855151 @default.
- W3136256577 hasRelatedWork W3089360322 @default.
- W3136256577 hasRelatedWork W3100137627 @default.
- W3136256577 hasRelatedWork W3100672003 @default.
- W3136256577 hasRelatedWork W3108315496 @default.
- W3136256577 hasRelatedWork W3201154633 @default.
- W3136256577 isParatext "false" @default.
- W3136256577 isRetracted "false" @default.