Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136263832> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3136263832 abstract "Graph Convolutional Network (GCN) has drawn considerable research attention in recent times. Many different problems from diverse domains can be solved efficiently using GCN. Community detection in graphs is a computationally challenging graph analytic problem. The presence of only a limited amount of labelled data (known communities) motivates us for using a learning approach to community discovery. However, detecting communities in large graphs using semi-supervised learning with GCN is still an open problem due to the scalability and accuracy issues. In this paper, we present a scalable method for detecting communities based on GCN via semi-supervised node classification. We optimize the hyper-parameters for our semi-supervised model for detecting communities using PyTorch with CUDA on GPU environment. We apply Mini-batch Gradient Descent for larger datasets to resolve the memory issue. We demonstrate an experimental evaluation on different real-world networks from diverse domains. Our model achieves up to 86.9% accuracy and 0.85 F1 Score on these practical datasets. We also show that using identity matrix as features, based on the graph connectivity, performs better with higher accuracy than that of vertex-based graph features. We accelerate the model performance 4 times with the use of GPUs over CPUs." @default.
- W3136263832 created "2021-03-29" @default.
- W3136263832 creator A5033369839 @default.
- W3136263832 creator A5078146729 @default.
- W3136263832 date "2020-12-10" @default.
- W3136263832 modified "2023-10-14" @default.
- W3136263832 title "Community Detection using Semi-supervised Learning with Graph Convolutional Network on GPUs" @default.
- W3136263832 cites W106504814 @default.
- W3136263832 cites W1971421925 @default.
- W3136263832 cites W1989788024 @default.
- W3136263832 cites W1995996823 @default.
- W3136263832 cites W2047940964 @default.
- W3136263832 cites W2109726592 @default.
- W3136263832 cites W2125910575 @default.
- W3136263832 cites W2131681506 @default.
- W3136263832 cites W2133990480 @default.
- W3136263832 cites W2765108993 @default.
- W3136263832 cites W2886462128 @default.
- W3136263832 cites W2899048350 @default.
- W3136263832 cites W2945827377 @default.
- W3136263832 cites W2962946486 @default.
- W3136263832 cites W2963486920 @default.
- W3136263832 cites W3008556495 @default.
- W3136263832 doi "https://doi.org/10.1109/bigdata50022.2020.9378123" @default.
- W3136263832 hasPublicationYear "2020" @default.
- W3136263832 type Work @default.
- W3136263832 sameAs 3136263832 @default.
- W3136263832 citedByCount "3" @default.
- W3136263832 countsByYear W31362638322022 @default.
- W3136263832 countsByYear W31362638322023 @default.
- W3136263832 crossrefType "proceedings-article" @default.
- W3136263832 hasAuthorship W3136263832A5033369839 @default.
- W3136263832 hasAuthorship W3136263832A5078146729 @default.
- W3136263832 hasConcept C119857082 @default.
- W3136263832 hasConcept C124101348 @default.
- W3136263832 hasConcept C132525143 @default.
- W3136263832 hasConcept C154945302 @default.
- W3136263832 hasConcept C173608175 @default.
- W3136263832 hasConcept C2778119891 @default.
- W3136263832 hasConcept C41008148 @default.
- W3136263832 hasConcept C48044578 @default.
- W3136263832 hasConcept C77088390 @default.
- W3136263832 hasConcept C80444323 @default.
- W3136263832 hasConceptScore W3136263832C119857082 @default.
- W3136263832 hasConceptScore W3136263832C124101348 @default.
- W3136263832 hasConceptScore W3136263832C132525143 @default.
- W3136263832 hasConceptScore W3136263832C154945302 @default.
- W3136263832 hasConceptScore W3136263832C173608175 @default.
- W3136263832 hasConceptScore W3136263832C2778119891 @default.
- W3136263832 hasConceptScore W3136263832C41008148 @default.
- W3136263832 hasConceptScore W3136263832C48044578 @default.
- W3136263832 hasConceptScore W3136263832C77088390 @default.
- W3136263832 hasConceptScore W3136263832C80444323 @default.
- W3136263832 hasFunder F4320309392 @default.
- W3136263832 hasFunder F4320311490 @default.
- W3136263832 hasLocation W31362638321 @default.
- W3136263832 hasOpenAccess W3136263832 @default.
- W3136263832 hasPrimaryLocation W31362638321 @default.
- W3136263832 hasRelatedWork W1525643724 @default.
- W3136263832 hasRelatedWork W2067938758 @default.
- W3136263832 hasRelatedWork W2090121768 @default.
- W3136263832 hasRelatedWork W2302028273 @default.
- W3136263832 hasRelatedWork W2333420780 @default.
- W3136263832 hasRelatedWork W2364921833 @default.
- W3136263832 hasRelatedWork W2382623646 @default.
- W3136263832 hasRelatedWork W2383162333 @default.
- W3136263832 hasRelatedWork W2961085424 @default.
- W3136263832 hasRelatedWork W3087771547 @default.
- W3136263832 isParatext "false" @default.
- W3136263832 isRetracted "false" @default.
- W3136263832 magId "3136263832" @default.
- W3136263832 workType "article" @default.