Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136273278> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3136273278 endingPage "34" @default.
- W3136273278 startingPage "25" @default.
- W3136273278 abstract "Foliar disease is common problem in plants; it appears as an abnormal change in the plant’s characteristics, such as the presence of lesions and discolorations, among others. These problems may be related to plant growth, which causes a decrease in crop production, impacting the agricultural economy. The causes of leaf damage can be variable, such as bacteria, viruses, nutritional deficiencies, or even consequences of climate change. Motivated to find a solution for this problem, we aim that using image processing and machine learning algorithms (MLA), these symptomatic characteristics of the leaf can be used to classify diseases. Then, contributions of this research are (i) the use of image processing methods in the feature extraction (characteristics), and (ii) the combination of assembled algorithms with deep learning to classify foliar features of Valencia orange (Citrus Sinensis) tree leaves. Combining these two classification approaches, we get optimal rates in binary datasets and highly competitive percentages in multiclass sets. This, using a database of images of three types of foliar damage of local plants. Result of combination of these two classification strategies is an exceptional reliable alternative for leaf damage identification of orange and other citrus plants." @default.
- W3136273278 created "2021-03-29" @default.
- W3136273278 creator A5033154465 @default.
- W3136273278 creator A5045841978 @default.
- W3136273278 creator A5061484745 @default.
- W3136273278 creator A5086655280 @default.
- W3136273278 creator A5090887762 @default.
- W3136273278 date "2021-03-01" @default.
- W3136273278 modified "2023-10-16" @default.
- W3136273278 title "Deep learning framework for leaf damage identification" @default.
- W3136273278 cites W1570448133 @default.
- W3136273278 cites W2003007706 @default.
- W3136273278 cites W2026021064 @default.
- W3136273278 cites W2040540878 @default.
- W3136273278 cites W2041636156 @default.
- W3136273278 cites W2067924831 @default.
- W3136273278 cites W2071208782 @default.
- W3136273278 cites W2091922923 @default.
- W3136273278 cites W2133059825 @default.
- W3136273278 cites W2144173791 @default.
- W3136273278 cites W2162772680 @default.
- W3136273278 cites W2185489349 @default.
- W3136273278 cites W2319902369 @default.
- W3136273278 cites W2473156356 @default.
- W3136273278 cites W2577267683 @default.
- W3136273278 cites W2740594002 @default.
- W3136273278 cites W2918702753 @default.
- W3136273278 cites W2972113714 @default.
- W3136273278 cites W3007597990 @default.
- W3136273278 cites W3015422918 @default.
- W3136273278 cites W3035982802 @default.
- W3136273278 cites W3036085849 @default.
- W3136273278 cites W3083481993 @default.
- W3136273278 cites W4288400169 @default.
- W3136273278 doi "https://doi.org/10.1177/1063293x21994953" @default.
- W3136273278 hasPublicationYear "2021" @default.
- W3136273278 type Work @default.
- W3136273278 sameAs 3136273278 @default.
- W3136273278 citedByCount "3" @default.
- W3136273278 countsByYear W31362732782022 @default.
- W3136273278 countsByYear W31362732782023 @default.
- W3136273278 crossrefType "journal-article" @default.
- W3136273278 hasAuthorship W3136273278A5033154465 @default.
- W3136273278 hasAuthorship W3136273278A5045841978 @default.
- W3136273278 hasAuthorship W3136273278A5061484745 @default.
- W3136273278 hasAuthorship W3136273278A5086655280 @default.
- W3136273278 hasAuthorship W3136273278A5090887762 @default.
- W3136273278 hasConcept C108583219 @default.
- W3136273278 hasConcept C119857082 @default.
- W3136273278 hasConcept C144027150 @default.
- W3136273278 hasConcept C153180895 @default.
- W3136273278 hasConcept C154945302 @default.
- W3136273278 hasConcept C33923547 @default.
- W3136273278 hasConcept C41008148 @default.
- W3136273278 hasConcept C52622490 @default.
- W3136273278 hasConcept C83082669 @default.
- W3136273278 hasConcept C86803240 @default.
- W3136273278 hasConceptScore W3136273278C108583219 @default.
- W3136273278 hasConceptScore W3136273278C119857082 @default.
- W3136273278 hasConceptScore W3136273278C144027150 @default.
- W3136273278 hasConceptScore W3136273278C153180895 @default.
- W3136273278 hasConceptScore W3136273278C154945302 @default.
- W3136273278 hasConceptScore W3136273278C33923547 @default.
- W3136273278 hasConceptScore W3136273278C41008148 @default.
- W3136273278 hasConceptScore W3136273278C52622490 @default.
- W3136273278 hasConceptScore W3136273278C83082669 @default.
- W3136273278 hasConceptScore W3136273278C86803240 @default.
- W3136273278 hasFunder F4320321739 @default.
- W3136273278 hasIssue "1" @default.
- W3136273278 hasLocation W31362732781 @default.
- W3136273278 hasOpenAccess W3136273278 @default.
- W3136273278 hasPrimaryLocation W31362732781 @default.
- W3136273278 hasRelatedWork W2033213769 @default.
- W3136273278 hasRelatedWork W2056912418 @default.
- W3136273278 hasRelatedWork W2112208972 @default.
- W3136273278 hasRelatedWork W2123759770 @default.
- W3136273278 hasRelatedWork W2151520854 @default.
- W3136273278 hasRelatedWork W2373006798 @default.
- W3136273278 hasRelatedWork W2601157893 @default.
- W3136273278 hasRelatedWork W2811390910 @default.
- W3136273278 hasRelatedWork W4312376745 @default.
- W3136273278 hasRelatedWork W4380075502 @default.
- W3136273278 hasVolume "29" @default.
- W3136273278 isParatext "false" @default.
- W3136273278 isRetracted "false" @default.
- W3136273278 magId "3136273278" @default.
- W3136273278 workType "article" @default.