Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136273658> ?p ?o ?g. }
- W3136273658 endingPage "42844" @default.
- W3136273658 startingPage "42817" @default.
- W3136273658 abstract "Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has been proposed for tackling the single-objective optimization problems and could dramatically fulfill good outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-objective optimization problems, motivate us to make a comprehensive study to see the performance of MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four variants of the marine predators' algorithm (MPA) for solving multi-objective optimization problems. The first version, called the multi-objective marine predators' algorithm (MMPA) is based on the behavior of marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate the exploration and exploitation phase of MPA to the dominance of the solutions-this version is called M-MMPA. DSEE counts the number of dominated solutions for each solution-the solutions with high dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase. The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a number of well-known multi-objective optimization algorithms." @default.
- W3136273658 created "2021-03-29" @default.
- W3136273658 creator A5054715965 @default.
- W3136273658 creator A5059760181 @default.
- W3136273658 creator A5079264025 @default.
- W3136273658 creator A5079704928 @default.
- W3136273658 creator A5091500375 @default.
- W3136273658 date "2021-01-01" @default.
- W3136273658 modified "2023-10-16" @default.
- W3136273658 title "An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems: Analysis and Validations" @default.
- W3136273658 cites W1506010655 @default.
- W3136273658 cites W1544309315 @default.
- W3136273658 cites W1957430778 @default.
- W3136273658 cites W2000825106 @default.
- W3136273658 cites W2022485595 @default.
- W3136273658 cites W2038420231 @default.
- W3136273658 cites W2060203686 @default.
- W3136273658 cites W2068411105 @default.
- W3136273658 cites W2078319647 @default.
- W3136273658 cites W2104017154 @default.
- W3136273658 cites W2125502051 @default.
- W3136273658 cites W2125899728 @default.
- W3136273658 cites W2126105956 @default.
- W3136273658 cites W2143381319 @default.
- W3136273658 cites W2146439308 @default.
- W3136273658 cites W2156221357 @default.
- W3136273658 cites W2165171393 @default.
- W3136273658 cites W2171074980 @default.
- W3136273658 cites W2174096823 @default.
- W3136273658 cites W2207649084 @default.
- W3136273658 cites W2306115793 @default.
- W3136273658 cites W2347804410 @default.
- W3136273658 cites W2481453975 @default.
- W3136273658 cites W2512532910 @default.
- W3136273658 cites W2588868245 @default.
- W3136273658 cites W2605454081 @default.
- W3136273658 cites W2613208678 @default.
- W3136273658 cites W2622041536 @default.
- W3136273658 cites W2623108157 @default.
- W3136273658 cites W2626235566 @default.
- W3136273658 cites W266356650 @default.
- W3136273658 cites W2738900493 @default.
- W3136273658 cites W2739195381 @default.
- W3136273658 cites W2742961367 @default.
- W3136273658 cites W2747918924 @default.
- W3136273658 cites W2751605210 @default.
- W3136273658 cites W2752314574 @default.
- W3136273658 cites W2762580623 @default.
- W3136273658 cites W2766078257 @default.
- W3136273658 cites W2772079570 @default.
- W3136273658 cites W2784151474 @default.
- W3136273658 cites W2804289411 @default.
- W3136273658 cites W2807637204 @default.
- W3136273658 cites W2883431723 @default.
- W3136273658 cites W2890907918 @default.
- W3136273658 cites W2899276225 @default.
- W3136273658 cites W2904661797 @default.
- W3136273658 cites W2907673188 @default.
- W3136273658 cites W2912180855 @default.
- W3136273658 cites W2920726522 @default.
- W3136273658 cites W2927038976 @default.
- W3136273658 cites W2954994557 @default.
- W3136273658 cites W2959841649 @default.
- W3136273658 cites W2962872331 @default.
- W3136273658 cites W2965492561 @default.
- W3136273658 cites W2965837582 @default.
- W3136273658 cites W2971217618 @default.
- W3136273658 cites W2971609700 @default.
- W3136273658 cites W2984585015 @default.
- W3136273658 cites W2987472937 @default.
- W3136273658 cites W2989539798 @default.
- W3136273658 cites W2997672980 @default.
- W3136273658 cites W3008126784 @default.
- W3136273658 cites W3011104345 @default.
- W3136273658 cites W3022098166 @default.
- W3136273658 cites W3023846105 @default.
- W3136273658 cites W3031898765 @default.
- W3136273658 cites W3034427160 @default.
- W3136273658 cites W3085208921 @default.
- W3136273658 cites W3093374737 @default.
- W3136273658 cites W3097669098 @default.
- W3136273658 cites W3107536865 @default.
- W3136273658 cites W3110062260 @default.
- W3136273658 cites W3114563514 @default.
- W3136273658 cites W3115451135 @default.
- W3136273658 doi "https://doi.org/10.1109/access.2021.3066323" @default.
- W3136273658 hasPublicationYear "2021" @default.
- W3136273658 type Work @default.
- W3136273658 sameAs 3136273658 @default.
- W3136273658 citedByCount "26" @default.
- W3136273658 countsByYear W31362736582021 @default.
- W3136273658 countsByYear W31362736582022 @default.
- W3136273658 countsByYear W31362736582023 @default.
- W3136273658 crossrefType "journal-article" @default.
- W3136273658 hasAuthorship W3136273658A5054715965 @default.
- W3136273658 hasAuthorship W3136273658A5059760181 @default.
- W3136273658 hasAuthorship W3136273658A5079264025 @default.
- W3136273658 hasAuthorship W3136273658A5079704928 @default.