Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136275772> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3136275772 abstract "This thesis is about the theory of open quantum many-body physics with a particular focus on driven-dissipative photonic and spin lattices. After a review of the main physical platforms and theoretical concepts, we describe our original results. In Chapter 2, we present a theory of the single-mode Kerr model with a time-dependent pump. This model describes a single-mode optical cavity with a third-order optical nonlinearity. In the regime of parameters where the semiclassical analysis shows bistability, we find that a dynamic hysteresis loop appears in the exact solution. The hysteresis area as a function of the sweep time shows a double power-law decay where the second exponent is independent of the system parameters. We show how these effects are related to the emergence of a dissipative phase transition. We also describe concisely the experimental results which have recently confirmed such theoretical predictions. In Chapter 3, we present the corner-space renormalization method. In order to obtain the steady-state density matrix of the lattice, we solve the Lindblad master equation in a subspace of the Hilbert space (the corner). The states spanning the corner space are selected iteratively using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. The method has been benchmarked on a two-dimensional Bose-Hubbard model with coherent driving. The strength and limitations of the method are critically discussed.In Chapter 4, we investigate a dissipative phase transition in the two-dimensional anisotropic Heisenberg XYZ model. Using the corner-space renormalization method we present a finite-size analysis of steady-state observables. In particular, we show the critical behaviour of the magnetic susceptibility, the entropy growth and the entanglement witnesses, providing a first evaluation of the critical exponents characterizing the transition. A study of the dynamics of finite-size systems is also consistent with a critical slowing down. For comparison, we present the corresponding analysis for one-dimensional arrays, showing the absence of criticality due to the reduced dimension.In Chapter 5, we explore the non-equilibrium photonic phases of a dissipative Bose-Hubbard model with incoherent pumping of coupled two-level systems. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of the system. We predict a second-order phase transition between an incompressible Mott-like phase and a coherent delocalized phase." @default.
- W3136275772 created "2021-03-29" @default.
- W3136275772 creator A5072804974 @default.
- W3136275772 date "2017-11-24" @default.
- W3136275772 modified "2023-09-27" @default.
- W3136275772 title "Dissipative phase transitions in open quantum lattice systems" @default.
- W3136275772 hasPublicationYear "2017" @default.
- W3136275772 type Work @default.
- W3136275772 sameAs 3136275772 @default.
- W3136275772 citedByCount "0" @default.
- W3136275772 crossrefType "dissertation" @default.
- W3136275772 hasAuthorship W3136275772A5072804974 @default.
- W3136275772 hasConcept C121332964 @default.
- W3136275772 hasConcept C121864883 @default.
- W3136275772 hasConcept C128805008 @default.
- W3136275772 hasConcept C158693339 @default.
- W3136275772 hasConcept C166124518 @default.
- W3136275772 hasConcept C24890656 @default.
- W3136275772 hasConcept C2781204021 @default.
- W3136275772 hasConcept C33923547 @default.
- W3136275772 hasConcept C535169671 @default.
- W3136275772 hasConcept C62520636 @default.
- W3136275772 hasConcept C62799726 @default.
- W3136275772 hasConcept C84114770 @default.
- W3136275772 hasConcept C97292510 @default.
- W3136275772 hasConcept C99692599 @default.
- W3136275772 hasConceptScore W3136275772C121332964 @default.
- W3136275772 hasConceptScore W3136275772C121864883 @default.
- W3136275772 hasConceptScore W3136275772C128805008 @default.
- W3136275772 hasConceptScore W3136275772C158693339 @default.
- W3136275772 hasConceptScore W3136275772C166124518 @default.
- W3136275772 hasConceptScore W3136275772C24890656 @default.
- W3136275772 hasConceptScore W3136275772C2781204021 @default.
- W3136275772 hasConceptScore W3136275772C33923547 @default.
- W3136275772 hasConceptScore W3136275772C535169671 @default.
- W3136275772 hasConceptScore W3136275772C62520636 @default.
- W3136275772 hasConceptScore W3136275772C62799726 @default.
- W3136275772 hasConceptScore W3136275772C84114770 @default.
- W3136275772 hasConceptScore W3136275772C97292510 @default.
- W3136275772 hasConceptScore W3136275772C99692599 @default.
- W3136275772 hasLocation W31362757721 @default.
- W3136275772 hasOpenAccess W3136275772 @default.
- W3136275772 hasPrimaryLocation W31362757721 @default.
- W3136275772 hasRelatedWork W1583850610 @default.
- W3136275772 hasRelatedWork W1967369717 @default.
- W3136275772 hasRelatedWork W1988428598 @default.
- W3136275772 hasRelatedWork W2011896715 @default.
- W3136275772 hasRelatedWork W2052281701 @default.
- W3136275772 hasRelatedWork W2059095581 @default.
- W3136275772 hasRelatedWork W2063129650 @default.
- W3136275772 hasRelatedWork W2111819867 @default.
- W3136275772 hasRelatedWork W2228833595 @default.
- W3136275772 hasRelatedWork W2282401743 @default.
- W3136275772 hasRelatedWork W2799025055 @default.
- W3136275772 hasRelatedWork W2909200797 @default.
- W3136275772 hasRelatedWork W2949147429 @default.
- W3136275772 hasRelatedWork W2949178675 @default.
- W3136275772 hasRelatedWork W3008136718 @default.
- W3136275772 hasRelatedWork W3040136777 @default.
- W3136275772 hasRelatedWork W3084857530 @default.
- W3136275772 hasRelatedWork W3102525401 @default.
- W3136275772 hasRelatedWork W3176294007 @default.
- W3136275772 isParatext "false" @default.
- W3136275772 isRetracted "false" @default.
- W3136275772 magId "3136275772" @default.
- W3136275772 workType "dissertation" @default.