Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136278867> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3136278867 abstract "Purpose: The purpose of this study is to present a framework to predict visual acuity (VA) based on a convolutional neural network (CNN) and to further to compare PAL designs. Method: A simple two hidden layer CNN was trained to classify the gap orientations of Landolt Cs by combining the feature extraction abilities of a CNN with psychophysical staircase methods. The simulation was validated regarding its predictability of clinical VA from induced spherical defocus (between +/-1.5 D, step size: 0.5 D) from 39 subjectively measured eyes. Afterwards, a simulation for a presbyopic eye corrected by either a generic hard or a soft PAL design (addition power: 2.5 D) was performed including lower and higher order aberrations. Result: The validation revealed consistent offset of +0.20 logMAR +/-0.035 logMAR from simulated VA. Bland-Altman analysis from offset-corrected results showed limits of agreement (+/-1.96 SD) of -0.08 logMAR and +0.07 logMAR, which is comparable to clinical repeatability of VA assessment. The application of the simulation for PALs confirmed a bigger far zone for generic hard design but did not reveal zone width differences for the intermediate or near zone. Furthermore, a horizontal area of better VA at the mid of the PAL was found, which confirms the importance for realistic performance simulations using object-based aberration and physiological performance measures as VA. Conclusion: The proposed holistic simulation tool was shown to act as an accurate model for subjective visual performance. Further, the simulations application for PALs indicated its potential as an effective method to compare visual performance of different optical designs. Moreover, the simulation provides the basis to incorporate neural aspects of visual perception and thus simulate the VA including neural processing in future." @default.
- W3136278867 created "2021-03-29" @default.
- W3136278867 creator A5008964142 @default.
- W3136278867 creator A5017180404 @default.
- W3136278867 creator A5060895798 @default.
- W3136278867 creator A5064374718 @default.
- W3136278867 date "2021-03-19" @default.
- W3136278867 modified "2023-09-27" @default.
- W3136278867 title "Prediction of progressive lens performance from neural network simulations." @default.
- W3136278867 cites W1988754634 @default.
- W3136278867 cites W1992035175 @default.
- W3136278867 cites W1993680472 @default.
- W3136278867 cites W1995086395 @default.
- W3136278867 cites W2005668429 @default.
- W3136278867 cites W2008803949 @default.
- W3136278867 cites W2009890202 @default.
- W3136278867 cites W2011476787 @default.
- W3136278867 cites W2027082562 @default.
- W3136278867 cites W2045206300 @default.
- W3136278867 cites W2052914603 @default.
- W3136278867 cites W2062956033 @default.
- W3136278867 cites W2069534242 @default.
- W3136278867 cites W2077119188 @default.
- W3136278867 cites W2078141409 @default.
- W3136278867 cites W2080148286 @default.
- W3136278867 cites W2083452024 @default.
- W3136278867 cites W2107146669 @default.
- W3136278867 cites W2111676515 @default.
- W3136278867 cites W2112045429 @default.
- W3136278867 cites W2113491252 @default.
- W3136278867 cites W2113650777 @default.
- W3136278867 cites W2133750711 @default.
- W3136278867 cites W2142624198 @default.
- W3136278867 cites W2205577135 @default.
- W3136278867 cites W2293541155 @default.
- W3136278867 cites W2323962055 @default.
- W3136278867 cites W2799584540 @default.
- W3136278867 cites W2995598126 @default.
- W3136278867 cites W589664387 @default.
- W3136278867 cites W87094252 @default.
- W3136278867 hasPublicationYear "2021" @default.
- W3136278867 type Work @default.
- W3136278867 sameAs 3136278867 @default.
- W3136278867 citedByCount "0" @default.
- W3136278867 crossrefType "posted-content" @default.
- W3136278867 hasAuthorship W3136278867A5008964142 @default.
- W3136278867 hasAuthorship W3136278867A5017180404 @default.
- W3136278867 hasAuthorship W3136278867A5060895798 @default.
- W3136278867 hasAuthorship W3136278867A5064374718 @default.
- W3136278867 hasConcept C105795698 @default.
- W3136278867 hasConcept C11413529 @default.
- W3136278867 hasConcept C153180895 @default.
- W3136278867 hasConcept C154020017 @default.
- W3136278867 hasConcept C154945302 @default.
- W3136278867 hasConcept C175291020 @default.
- W3136278867 hasConcept C197640229 @default.
- W3136278867 hasConcept C199360897 @default.
- W3136278867 hasConcept C33923547 @default.
- W3136278867 hasConcept C41008148 @default.
- W3136278867 hasConcept C50644808 @default.
- W3136278867 hasConcept C81363708 @default.
- W3136278867 hasConceptScore W3136278867C105795698 @default.
- W3136278867 hasConceptScore W3136278867C11413529 @default.
- W3136278867 hasConceptScore W3136278867C153180895 @default.
- W3136278867 hasConceptScore W3136278867C154020017 @default.
- W3136278867 hasConceptScore W3136278867C154945302 @default.
- W3136278867 hasConceptScore W3136278867C175291020 @default.
- W3136278867 hasConceptScore W3136278867C197640229 @default.
- W3136278867 hasConceptScore W3136278867C199360897 @default.
- W3136278867 hasConceptScore W3136278867C33923547 @default.
- W3136278867 hasConceptScore W3136278867C41008148 @default.
- W3136278867 hasConceptScore W3136278867C50644808 @default.
- W3136278867 hasConceptScore W3136278867C81363708 @default.
- W3136278867 hasLocation W31362788671 @default.
- W3136278867 hasOpenAccess W3136278867 @default.
- W3136278867 hasPrimaryLocation W31362788671 @default.
- W3136278867 hasRelatedWork W2105310189 @default.
- W3136278867 hasRelatedWork W2362778160 @default.
- W3136278867 hasRelatedWork W2921115684 @default.
- W3136278867 hasRelatedWork W3199050694 @default.
- W3136278867 isParatext "false" @default.
- W3136278867 isRetracted "false" @default.
- W3136278867 magId "3136278867" @default.
- W3136278867 workType "article" @default.