Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136279034> ?p ?o ?g. }
- W3136279034 endingPage "100491" @default.
- W3136279034 startingPage "100491" @default.
- W3136279034 abstract "Synthetic Aperture Radar is an interesting topic of research for scientists & researchers as it is associated with polarimetric information which helps to detect surface & subsurface features of land, sea, and ice. Classical techniques include the use of polarimetric information to simplify SAR image interpretation and to classify it for various earth observation applications. The deep learning (DL) techniques like Convolutional Neural Network (CNN), extract useful information from an image (here dual polarimetric SAR dataset) about the land surface to segment or classify the dataset for various earth applications. In the current research paper convolutional neural network is used to automatically classify RISAT-1 dataset over the Mumbai region for land cover classification. Also impact of patch size variation was studied. In addition, the efficiency of the CNN model was tested using an approach similar to transfer learning approach on multi resolution images (different multilooked images) i.e. CNN was trained twice on different resolution images; one trained on coarser resolution and tested on comparatively higher resolution datasets and other vice versa. It was found that increasing the patch size for convolution classified the image more accurately but at the same time it smoothens the output image. Also, CNN model trained on low spatial resolution image predicted better the higher spatial resolution image as compared to the reverse scenario." @default.
- W3136279034 created "2021-03-29" @default.
- W3136279034 creator A5021626049 @default.
- W3136279034 creator A5039209057 @default.
- W3136279034 creator A5059915951 @default.
- W3136279034 creator A5071514497 @default.
- W3136279034 creator A5074868814 @default.
- W3136279034 date "2021-04-01" @default.
- W3136279034 modified "2023-09-24" @default.
- W3136279034 title "Automatic land cover classification of multi-resolution dualpol data using convolutional neural network (CNN)" @default.
- W3136279034 cites W1843853251 @default.
- W3136279034 cites W1990286333 @default.
- W3136279034 cites W1994490949 @default.
- W3136279034 cites W1999695055 @default.
- W3136279034 cites W2031471651 @default.
- W3136279034 cites W2115367256 @default.
- W3136279034 cites W2117539524 @default.
- W3136279034 cites W2126326837 @default.
- W3136279034 cites W2165698076 @default.
- W3136279034 cites W2253429366 @default.
- W3136279034 cites W2319040573 @default.
- W3136279034 cites W2345852998 @default.
- W3136279034 cites W2397078533 @default.
- W3136279034 cites W2559324447 @default.
- W3136279034 cites W2566630808 @default.
- W3136279034 cites W2590149631 @default.
- W3136279034 cites W2618530766 @default.
- W3136279034 cites W2619037961 @default.
- W3136279034 cites W2754361766 @default.
- W3136279034 cites W2766299269 @default.
- W3136279034 cites W2783608381 @default.
- W3136279034 cites W2914272072 @default.
- W3136279034 cites W2939781831 @default.
- W3136279034 cites W2963659230 @default.
- W3136279034 cites W2972321769 @default.
- W3136279034 cites W2996794505 @default.
- W3136279034 doi "https://doi.org/10.1016/j.rsase.2021.100491" @default.
- W3136279034 hasPublicationYear "2021" @default.
- W3136279034 type Work @default.
- W3136279034 sameAs 3136279034 @default.
- W3136279034 citedByCount "5" @default.
- W3136279034 countsByYear W31362790342022 @default.
- W3136279034 countsByYear W31362790342023 @default.
- W3136279034 crossrefType "journal-article" @default.
- W3136279034 hasAuthorship W3136279034A5021626049 @default.
- W3136279034 hasAuthorship W3136279034A5039209057 @default.
- W3136279034 hasAuthorship W3136279034A5059915951 @default.
- W3136279034 hasAuthorship W3136279034A5071514497 @default.
- W3136279034 hasAuthorship W3136279034A5074868814 @default.
- W3136279034 hasConcept C115961682 @default.
- W3136279034 hasConcept C127413603 @default.
- W3136279034 hasConcept C146978453 @default.
- W3136279034 hasConcept C147176958 @default.
- W3136279034 hasConcept C153180895 @default.
- W3136279034 hasConcept C154945302 @default.
- W3136279034 hasConcept C19269812 @default.
- W3136279034 hasConcept C205372480 @default.
- W3136279034 hasConcept C205649164 @default.
- W3136279034 hasConcept C2780648208 @default.
- W3136279034 hasConcept C39399123 @default.
- W3136279034 hasConcept C41008148 @default.
- W3136279034 hasConcept C45347329 @default.
- W3136279034 hasConcept C4792198 @default.
- W3136279034 hasConcept C50644808 @default.
- W3136279034 hasConcept C62649853 @default.
- W3136279034 hasConcept C75294576 @default.
- W3136279034 hasConcept C81363708 @default.
- W3136279034 hasConcept C87360688 @default.
- W3136279034 hasConceptScore W3136279034C115961682 @default.
- W3136279034 hasConceptScore W3136279034C127413603 @default.
- W3136279034 hasConceptScore W3136279034C146978453 @default.
- W3136279034 hasConceptScore W3136279034C147176958 @default.
- W3136279034 hasConceptScore W3136279034C153180895 @default.
- W3136279034 hasConceptScore W3136279034C154945302 @default.
- W3136279034 hasConceptScore W3136279034C19269812 @default.
- W3136279034 hasConceptScore W3136279034C205372480 @default.
- W3136279034 hasConceptScore W3136279034C205649164 @default.
- W3136279034 hasConceptScore W3136279034C2780648208 @default.
- W3136279034 hasConceptScore W3136279034C39399123 @default.
- W3136279034 hasConceptScore W3136279034C41008148 @default.
- W3136279034 hasConceptScore W3136279034C45347329 @default.
- W3136279034 hasConceptScore W3136279034C4792198 @default.
- W3136279034 hasConceptScore W3136279034C50644808 @default.
- W3136279034 hasConceptScore W3136279034C62649853 @default.
- W3136279034 hasConceptScore W3136279034C75294576 @default.
- W3136279034 hasConceptScore W3136279034C81363708 @default.
- W3136279034 hasConceptScore W3136279034C87360688 @default.
- W3136279034 hasFunder F4320320722 @default.
- W3136279034 hasFunder F4320336495 @default.
- W3136279034 hasLocation W31362790341 @default.
- W3136279034 hasOpenAccess W3136279034 @default.
- W3136279034 hasPrimaryLocation W31362790341 @default.
- W3136279034 hasRelatedWork W1982635469 @default.
- W3136279034 hasRelatedWork W2121666530 @default.
- W3136279034 hasRelatedWork W2732542196 @default.
- W3136279034 hasRelatedWork W2760085659 @default.
- W3136279034 hasRelatedWork W2810384904 @default.
- W3136279034 hasRelatedWork W2912288872 @default.