Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136279212> ?p ?o ?g. }
- W3136279212 endingPage "273" @default.
- W3136279212 startingPage "247" @default.
- W3136279212 abstract "Multivariate Mittag-Leffler functions are a strong generalisation of the univariate and bivariate Mittag-Leffler functions which are known to be important in fractional calculus. We consider the general functional operator defined by an integral transform with a multivariate Mittag-Leffler function in the kernel. We prove an expression for this operator as an infinite series of Riemann–Liouville integrals, thereby demonstrating that it fits into the established framework of fractional calculus, and we show the power of this series formula by straightforwardly deducing many facts, some new and some already known but now more quickly proved, about the original integral operator. We illustrate our work here by calculating some examples both analytically and numerically, and comparing the results on graphs. We also define fractional derivative operators corresponding to the established integral operator. As an application, we consider some Cauchy-type problems for fractional integro-differential equations involving this operator, where existence and uniqueness of solutions can be proved using fixed point theory. Finally, we generalise the theory by applying the same operators with respect to arbitrary monotonic functions." @default.
- W3136279212 created "2021-03-29" @default.
- W3136279212 creator A5025303261 @default.
- W3136279212 creator A5030760140 @default.
- W3136279212 date "2021-04-01" @default.
- W3136279212 modified "2023-09-27" @default.
- W3136279212 title "On the fractional calculus of multivariate Mittag-Leffler functions" @default.
- W3136279212 cites W1970631868 @default.
- W3136279212 cites W1974880480 @default.
- W3136279212 cites W1982261380 @default.
- W3136279212 cites W1986414367 @default.
- W3136279212 cites W2008295296 @default.
- W3136279212 cites W2008527067 @default.
- W3136279212 cites W2011368105 @default.
- W3136279212 cites W2034789576 @default.
- W3136279212 cites W2035906688 @default.
- W3136279212 cites W2062766727 @default.
- W3136279212 cites W2087101294 @default.
- W3136279212 cites W2108338926 @default.
- W3136279212 cites W2137587686 @default.
- W3136279212 cites W2151015649 @default.
- W3136279212 cites W2326700693 @default.
- W3136279212 cites W2479316932 @default.
- W3136279212 cites W2520410115 @default.
- W3136279212 cites W2578545825 @default.
- W3136279212 cites W2618153950 @default.
- W3136279212 cites W2770827266 @default.
- W3136279212 cites W2771634040 @default.
- W3136279212 cites W2883208200 @default.
- W3136279212 cites W2902426614 @default.
- W3136279212 cites W2947935779 @default.
- W3136279212 cites W2951682740 @default.
- W3136279212 cites W2963670184 @default.
- W3136279212 cites W2972177571 @default.
- W3136279212 cites W3037479431 @default.
- W3136279212 cites W3043414797 @default.
- W3136279212 cites W3107868541 @default.
- W3136279212 cites W3118767411 @default.
- W3136279212 cites W3125811323 @default.
- W3136279212 cites W4239838448 @default.
- W3136279212 cites W4301223505 @default.
- W3136279212 cites W2017531705 @default.
- W3136279212 doi "https://doi.org/10.1080/00207160.2021.1906869" @default.
- W3136279212 hasPublicationYear "2021" @default.
- W3136279212 type Work @default.
- W3136279212 sameAs 3136279212 @default.
- W3136279212 citedByCount "9" @default.
- W3136279212 countsByYear W31362792122021 @default.
- W3136279212 countsByYear W31362792122022 @default.
- W3136279212 countsByYear W31362792122023 @default.
- W3136279212 crossrefType "journal-article" @default.
- W3136279212 hasAuthorship W3136279212A5025303261 @default.
- W3136279212 hasAuthorship W3136279212A5030760140 @default.
- W3136279212 hasConcept C104317684 @default.
- W3136279212 hasConcept C105795698 @default.
- W3136279212 hasConcept C117312493 @default.
- W3136279212 hasConcept C127413603 @default.
- W3136279212 hasConcept C133731056 @default.
- W3136279212 hasConcept C134306372 @default.
- W3136279212 hasConcept C136119220 @default.
- W3136279212 hasConcept C153635880 @default.
- W3136279212 hasConcept C154249771 @default.
- W3136279212 hasConcept C158448853 @default.
- W3136279212 hasConcept C161584116 @default.
- W3136279212 hasConcept C17020691 @default.
- W3136279212 hasConcept C185592680 @default.
- W3136279212 hasConcept C199163554 @default.
- W3136279212 hasConcept C199343813 @default.
- W3136279212 hasConcept C202444582 @default.
- W3136279212 hasConcept C205107259 @default.
- W3136279212 hasConcept C26955809 @default.
- W3136279212 hasConcept C2777021972 @default.
- W3136279212 hasConcept C2777686260 @default.
- W3136279212 hasConcept C28826006 @default.
- W3136279212 hasConcept C33695381 @default.
- W3136279212 hasConcept C33923547 @default.
- W3136279212 hasConcept C55493867 @default.
- W3136279212 hasConcept C71924100 @default.
- W3136279212 hasConcept C72169020 @default.
- W3136279212 hasConcept C74193536 @default.
- W3136279212 hasConcept C82006148 @default.
- W3136279212 hasConcept C86339819 @default.
- W3136279212 hasConcept C98724732 @default.
- W3136279212 hasConceptScore W3136279212C104317684 @default.
- W3136279212 hasConceptScore W3136279212C105795698 @default.
- W3136279212 hasConceptScore W3136279212C117312493 @default.
- W3136279212 hasConceptScore W3136279212C127413603 @default.
- W3136279212 hasConceptScore W3136279212C133731056 @default.
- W3136279212 hasConceptScore W3136279212C134306372 @default.
- W3136279212 hasConceptScore W3136279212C136119220 @default.
- W3136279212 hasConceptScore W3136279212C153635880 @default.
- W3136279212 hasConceptScore W3136279212C154249771 @default.
- W3136279212 hasConceptScore W3136279212C158448853 @default.
- W3136279212 hasConceptScore W3136279212C161584116 @default.
- W3136279212 hasConceptScore W3136279212C17020691 @default.
- W3136279212 hasConceptScore W3136279212C185592680 @default.
- W3136279212 hasConceptScore W3136279212C199163554 @default.
- W3136279212 hasConceptScore W3136279212C199343813 @default.