Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136282444> ?p ?o ?g. }
- W3136282444 endingPage "110930" @default.
- W3136282444 startingPage "110930" @default.
- W3136282444 abstract "A building energy model (BEM) is essential for understanding building energy consumption, evaluating energy-saving measures, and developing associated codes, standards, and policies. The calibration of BEM helps to ensure the accuracy of the model, whereas it remains a challenge. Conventional manual or automated methods are mostly deterministic and neglect the inherent uncertainties of BEM. In comparison, the recent development of the stochastic BEM calibration based on Bayesian inference has gained attention, whereas many are baffled by its underlying theory, strengths, limitations, and implementations. There are also various mathematical models and tools in the literature, making it hard for selection. This paper aims to unravel the myths about the Bayesian inference and critically review various implementation options with a series of model selections suggested so that a user would be able to employ the Bayesian inference calibration at the end of the paper. We also hope that the review contributes to facilitating a broader implementation of the method for BEM calibrations. First, an overview is summarized for the current status and development of Bayesian inference calibration in building energy modeling. Second, the theory and methodology of model calibration, Bayesian statistics, and Markov Chain Monte Carlo are illustrated. Third, the implementation of Bayesian inference is described, including several practical issues such as BEM determination, unknown calibration parameters number, their ranges and distributions, Meta-model selections, and programming languages based on the statistical package R. The review ends with conclusions and future work identified." @default.
- W3136282444 created "2021-03-29" @default.
- W3136282444 creator A5037210729 @default.
- W3136282444 creator A5071239107 @default.
- W3136282444 creator A5087464086 @default.
- W3136282444 date "2021-06-01" @default.
- W3136282444 modified "2023-10-13" @default.
- W3136282444 title "Review on building energy model calibration by Bayesian inference" @default.
- W3136282444 cites W1463062441 @default.
- W3136282444 cites W1517555081 @default.
- W3136282444 cites W1582555728 @default.
- W3136282444 cites W1590824621 @default.
- W3136282444 cites W1918195090 @default.
- W3136282444 cites W1964186439 @default.
- W3136282444 cites W1966258711 @default.
- W3136282444 cites W1967252484 @default.
- W3136282444 cites W1969085745 @default.
- W3136282444 cites W1973261409 @default.
- W3136282444 cites W1973333099 @default.
- W3136282444 cites W1973748613 @default.
- W3136282444 cites W1974194704 @default.
- W3136282444 cites W1990751728 @default.
- W3136282444 cites W1995737178 @default.
- W3136282444 cites W1997986440 @default.
- W3136282444 cites W2001259880 @default.
- W3136282444 cites W2001423897 @default.
- W3136282444 cites W2001451216 @default.
- W3136282444 cites W2020999234 @default.
- W3136282444 cites W2023543162 @default.
- W3136282444 cites W2025720061 @default.
- W3136282444 cites W2026942921 @default.
- W3136282444 cites W2028962976 @default.
- W3136282444 cites W2029882909 @default.
- W3136282444 cites W2041136966 @default.
- W3136282444 cites W2056277803 @default.
- W3136282444 cites W2056760934 @default.
- W3136282444 cites W2061663415 @default.
- W3136282444 cites W2063401383 @default.
- W3136282444 cites W2065885930 @default.
- W3136282444 cites W2066584677 @default.
- W3136282444 cites W2081319752 @default.
- W3136282444 cites W2108152153 @default.
- W3136282444 cites W2108812134 @default.
- W3136282444 cites W2111619626 @default.
- W3136282444 cites W2134012062 @default.
- W3136282444 cites W2137122895 @default.
- W3136282444 cites W2168787488 @default.
- W3136282444 cites W2171168419 @default.
- W3136282444 cites W2172172920 @default.
- W3136282444 cites W2247885690 @default.
- W3136282444 cites W2290902902 @default.
- W3136282444 cites W2310182826 @default.
- W3136282444 cites W2337989151 @default.
- W3136282444 cites W2345130294 @default.
- W3136282444 cites W2418522081 @default.
- W3136282444 cites W2512816756 @default.
- W3136282444 cites W2533394910 @default.
- W3136282444 cites W2533957110 @default.
- W3136282444 cites W2548260563 @default.
- W3136282444 cites W2567687373 @default.
- W3136282444 cites W2618603214 @default.
- W3136282444 cites W2746142811 @default.
- W3136282444 cites W2750869373 @default.
- W3136282444 cites W2751234239 @default.
- W3136282444 cites W2754380514 @default.
- W3136282444 cites W2773753192 @default.
- W3136282444 cites W2781697740 @default.
- W3136282444 cites W2792640994 @default.
- W3136282444 cites W2793776490 @default.
- W3136282444 cites W2796092234 @default.
- W3136282444 cites W2803633931 @default.
- W3136282444 cites W2804395012 @default.
- W3136282444 cites W2810532979 @default.
- W3136282444 cites W2892745042 @default.
- W3136282444 cites W2897258552 @default.
- W3136282444 cites W2937535234 @default.
- W3136282444 cites W2952907678 @default.
- W3136282444 cites W2957897705 @default.
- W3136282444 cites W2962851448 @default.
- W3136282444 cites W2964211507 @default.
- W3136282444 cites W2965206442 @default.
- W3136282444 cites W2972156214 @default.
- W3136282444 cites W2998188743 @default.
- W3136282444 cites W3007240953 @default.
- W3136282444 cites W3016521959 @default.
- W3136282444 doi "https://doi.org/10.1016/j.rser.2021.110930" @default.
- W3136282444 hasPublicationYear "2021" @default.
- W3136282444 type Work @default.
- W3136282444 sameAs 3136282444 @default.
- W3136282444 citedByCount "36" @default.
- W3136282444 countsByYear W31362824442021 @default.
- W3136282444 countsByYear W31362824442022 @default.
- W3136282444 countsByYear W31362824442023 @default.
- W3136282444 crossrefType "journal-article" @default.
- W3136282444 hasAuthorship W3136282444A5037210729 @default.
- W3136282444 hasAuthorship W3136282444A5071239107 @default.
- W3136282444 hasAuthorship W3136282444A5087464086 @default.
- W3136282444 hasConcept C105795698 @default.