Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136283269> ?p ?o ?g. }
- W3136283269 abstract "Magnetism prediction is of great significance for Fe-based metallic glasses (FeMGs), which have shown great commercial value. Theories or models established based on condensed matter physics exhibit several exceptions and limited accuracy. In this work, machine learning (ML) models learned from a large amount of experimental data were trained based on eXtreme gradient boosting (XGBoost), artificial neural networks (ANN), and random forest to predict the magnetic properties of FeMGs. The XGBoost and ANN models exhibited comparably excellent predictive performance, with R^2 >= 0.903, mean absolute percentage error (MAPE) <= 6.17, and root mean squared error (RMSE) <= 0.098. The trained ML models aggregate the influence of 13 factors, which is difficult to achieve in traditional physical models. The influence of local structure, which was represented by the experimental parameter of the supercooled liquid region, presented a significant impact on the predictive performance of ML models. The developed ML-based method here can predict the magnetic properties of FeMGs by considering multiple factors simultaneously, including complex local structures." @default.
- W3136283269 created "2021-03-29" @default.
- W3136283269 creator A5005751963 @default.
- W3136283269 creator A5016094741 @default.
- W3136283269 creator A5022526821 @default.
- W3136283269 date "2021-03-16" @default.
- W3136283269 modified "2023-09-26" @default.
- W3136283269 title "Machine learning prediction of magnetic properties of Fe-based metallic glasses considering local structures" @default.
- W3136283269 cites W1201992510 @default.
- W3136283269 cites W1503398984 @default.
- W3136283269 cites W1802710653 @default.
- W3136283269 cites W1968272358 @default.
- W3136283269 cites W1983296081 @default.
- W3136283269 cites W1995115606 @default.
- W3136283269 cites W1995334244 @default.
- W3136283269 cites W1996294139 @default.
- W3136283269 cites W1998348777 @default.
- W3136283269 cites W1999682328 @default.
- W3136283269 cites W2010291176 @default.
- W3136283269 cites W2012700193 @default.
- W3136283269 cites W2015162865 @default.
- W3136283269 cites W2020883157 @default.
- W3136283269 cites W2044954668 @default.
- W3136283269 cites W2052370942 @default.
- W3136283269 cites W2066327914 @default.
- W3136283269 cites W2068296345 @default.
- W3136283269 cites W2068415766 @default.
- W3136283269 cites W2073211418 @default.
- W3136283269 cites W2082000611 @default.
- W3136283269 cites W2090812036 @default.
- W3136283269 cites W2341768177 @default.
- W3136283269 cites W2396591386 @default.
- W3136283269 cites W2491260954 @default.
- W3136283269 cites W2568139390 @default.
- W3136283269 cites W2734691712 @default.
- W3136283269 cites W2921873493 @default.
- W3136283269 cites W2929604342 @default.
- W3136283269 cites W2941375602 @default.
- W3136283269 cites W2965611472 @default.
- W3136283269 cites W2982721479 @default.
- W3136283269 cites W2990056191 @default.
- W3136283269 cites W3008088660 @default.
- W3136283269 cites W3024655990 @default.
- W3136283269 cites W3034918457 @default.
- W3136283269 cites W3036861017 @default.
- W3136283269 cites W3083232684 @default.
- W3136283269 cites W3091563199 @default.
- W3136283269 cites W3102476541 @default.
- W3136283269 cites W3106314872 @default.
- W3136283269 cites W3144077237 @default.
- W3136283269 cites W621026660 @default.
- W3136283269 hasPublicationYear "2021" @default.
- W3136283269 type Work @default.
- W3136283269 sameAs 3136283269 @default.
- W3136283269 citedByCount "0" @default.
- W3136283269 crossrefType "posted-content" @default.
- W3136283269 hasAuthorship W3136283269A5005751963 @default.
- W3136283269 hasAuthorship W3136283269A5016094741 @default.
- W3136283269 hasAuthorship W3136283269A5022526821 @default.
- W3136283269 hasConcept C105795698 @default.
- W3136283269 hasConcept C119857082 @default.
- W3136283269 hasConcept C121332964 @default.
- W3136283269 hasConcept C139945424 @default.
- W3136283269 hasConcept C150217764 @default.
- W3136283269 hasConcept C154945302 @default.
- W3136283269 hasConcept C169258074 @default.
- W3136283269 hasConcept C188154048 @default.
- W3136283269 hasConcept C192562407 @default.
- W3136283269 hasConcept C197162081 @default.
- W3136283269 hasConcept C26873012 @default.
- W3136283269 hasConcept C33923547 @default.
- W3136283269 hasConcept C41008148 @default.
- W3136283269 hasConcept C45804977 @default.
- W3136283269 hasConcept C46686674 @default.
- W3136283269 hasConcept C50644808 @default.
- W3136283269 hasConcept C70153297 @default.
- W3136283269 hasConceptScore W3136283269C105795698 @default.
- W3136283269 hasConceptScore W3136283269C119857082 @default.
- W3136283269 hasConceptScore W3136283269C121332964 @default.
- W3136283269 hasConceptScore W3136283269C139945424 @default.
- W3136283269 hasConceptScore W3136283269C150217764 @default.
- W3136283269 hasConceptScore W3136283269C154945302 @default.
- W3136283269 hasConceptScore W3136283269C169258074 @default.
- W3136283269 hasConceptScore W3136283269C188154048 @default.
- W3136283269 hasConceptScore W3136283269C192562407 @default.
- W3136283269 hasConceptScore W3136283269C197162081 @default.
- W3136283269 hasConceptScore W3136283269C26873012 @default.
- W3136283269 hasConceptScore W3136283269C33923547 @default.
- W3136283269 hasConceptScore W3136283269C41008148 @default.
- W3136283269 hasConceptScore W3136283269C45804977 @default.
- W3136283269 hasConceptScore W3136283269C46686674 @default.
- W3136283269 hasConceptScore W3136283269C50644808 @default.
- W3136283269 hasConceptScore W3136283269C70153297 @default.
- W3136283269 hasLocation W31362832691 @default.
- W3136283269 hasOpenAccess W3136283269 @default.
- W3136283269 hasPrimaryLocation W31362832691 @default.
- W3136283269 hasRelatedWork W1952248012 @default.
- W3136283269 hasRelatedWork W1970054902 @default.
- W3136283269 hasRelatedWork W2076464424 @default.
- W3136283269 hasRelatedWork W2330434512 @default.