Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136286566> ?p ?o ?g. }
- W3136286566 endingPage "1161" @default.
- W3136286566 startingPage "1134" @default.
- W3136286566 abstract "Many real-world datasets are labeled with natural orders, i.e., ordinal labels. Ordinal regression is a method to predict ordinal labels that finds a wide range of applications in data-rich domains, such as natural, health and social sciences. Most existing ordinal regression approaches work well for independent and identically distributed (IID) instances via formulating a single ordinal regression task. However, for heterogeneous non-IID instances with well-defined local geometric structures, e.g., subpopulation groups, multi-task learning (MTL) provides a promising framework to encode task (subgroup) relatedness, bridge data from all tasks, and simultaneously learn multiple related tasks in efforts to improve generalization performance. Even though MTL methods have been extensively studied, there is barely existing work investigating MTL for heterogeneous data with ordinal labels. We tackle this important problem via sparse and deep multi-task approaches. Specifically, we develop a regularized multi-task ordinal regression (MTOR) model for smaller datasets and a deep neural networks based MTOR model for large-scale datasets. We evaluate the performance using three real-world healthcare datasets with applications to multi-stage disease progression diagnosis. Our experiments indicate that the proposed MTOR models markedly improve the prediction performance comparing with single-task ordinal regression models." @default.
- W3136286566 created "2021-03-29" @default.
- W3136286566 creator A5009256505 @default.
- W3136286566 creator A5029484872 @default.
- W3136286566 date "2021-03-23" @default.
- W3136286566 modified "2023-10-17" @default.
- W3136286566 title "Tackling ordinal regression problem for heterogeneous data: sparse and deep multi-task learning approaches" @default.
- W3136286566 cites W1506609358 @default.
- W3136286566 cites W1734803745 @default.
- W3136286566 cites W1972588194 @default.
- W3136286566 cites W1980896222 @default.
- W3136286566 cites W1982538924 @default.
- W3136286566 cites W1992856329 @default.
- W3136286566 cites W1999014821 @default.
- W3136286566 cites W2008763786 @default.
- W3136286566 cites W2012838480 @default.
- W3136286566 cites W2015229866 @default.
- W3136286566 cites W2033472483 @default.
- W3136286566 cites W2049329064 @default.
- W3136286566 cites W2061873388 @default.
- W3136286566 cites W2061879449 @default.
- W3136286566 cites W2065180801 @default.
- W3136286566 cites W2070663332 @default.
- W3136286566 cites W2074024365 @default.
- W3136286566 cites W2077858109 @default.
- W3136286566 cites W2078714887 @default.
- W3136286566 cites W2090406381 @default.
- W3136286566 cites W2100556411 @default.
- W3136286566 cites W2102721514 @default.
- W3136286566 cites W2104246902 @default.
- W3136286566 cites W2107617008 @default.
- W3136286566 cites W2107988499 @default.
- W3136286566 cites W2118099552 @default.
- W3136286566 cites W2122320288 @default.
- W3136286566 cites W2138473441 @default.
- W3136286566 cites W2143419558 @default.
- W3136286566 cites W2155513557 @default.
- W3136286566 cites W2162086569 @default.
- W3136286566 cites W2190044943 @default.
- W3136286566 cites W2190734858 @default.
- W3136286566 cites W2238902321 @default.
- W3136286566 cites W2251324968 @default.
- W3136286566 cites W2549401308 @default.
- W3136286566 cites W2739273495 @default.
- W3136286566 cites W2742048379 @default.
- W3136286566 cites W3004643689 @default.
- W3136286566 cites W3103471119 @default.
- W3136286566 cites W3123005415 @default.
- W3136286566 cites W4252961296 @default.
- W3136286566 doi "https://doi.org/10.1007/s10618-021-00746-8" @default.
- W3136286566 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8153254" @default.
- W3136286566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34054330" @default.
- W3136286566 hasPublicationYear "2021" @default.
- W3136286566 type Work @default.
- W3136286566 sameAs 3136286566 @default.
- W3136286566 citedByCount "3" @default.
- W3136286566 countsByYear W31362865662022 @default.
- W3136286566 countsByYear W31362865662023 @default.
- W3136286566 crossrefType "journal-article" @default.
- W3136286566 hasAuthorship W3136286566A5009256505 @default.
- W3136286566 hasAuthorship W3136286566A5029484872 @default.
- W3136286566 hasBestOaLocation W31362865662 @default.
- W3136286566 hasConcept C105795698 @default.
- W3136286566 hasConcept C110313322 @default.
- W3136286566 hasConcept C119857082 @default.
- W3136286566 hasConcept C124101348 @default.
- W3136286566 hasConcept C134306372 @default.
- W3136286566 hasConcept C154945302 @default.
- W3136286566 hasConcept C159985019 @default.
- W3136286566 hasConcept C162324750 @default.
- W3136286566 hasConcept C177148314 @default.
- W3136286566 hasConcept C187736073 @default.
- W3136286566 hasConcept C192562407 @default.
- W3136286566 hasConcept C204323151 @default.
- W3136286566 hasConcept C2780451532 @default.
- W3136286566 hasConcept C28006648 @default.
- W3136286566 hasConcept C2909711754 @default.
- W3136286566 hasConcept C33923547 @default.
- W3136286566 hasConcept C41008148 @default.
- W3136286566 hasConcept C50644808 @default.
- W3136286566 hasConcept C81386100 @default.
- W3136286566 hasConcept C83546350 @default.
- W3136286566 hasConcept C85461838 @default.
- W3136286566 hasConceptScore W3136286566C105795698 @default.
- W3136286566 hasConceptScore W3136286566C110313322 @default.
- W3136286566 hasConceptScore W3136286566C119857082 @default.
- W3136286566 hasConceptScore W3136286566C124101348 @default.
- W3136286566 hasConceptScore W3136286566C134306372 @default.
- W3136286566 hasConceptScore W3136286566C154945302 @default.
- W3136286566 hasConceptScore W3136286566C159985019 @default.
- W3136286566 hasConceptScore W3136286566C162324750 @default.
- W3136286566 hasConceptScore W3136286566C177148314 @default.
- W3136286566 hasConceptScore W3136286566C187736073 @default.
- W3136286566 hasConceptScore W3136286566C192562407 @default.
- W3136286566 hasConceptScore W3136286566C204323151 @default.
- W3136286566 hasConceptScore W3136286566C2780451532 @default.
- W3136286566 hasConceptScore W3136286566C28006648 @default.
- W3136286566 hasConceptScore W3136286566C2909711754 @default.