Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136287790> ?p ?o ?g. }
- W3136287790 endingPage "78" @default.
- W3136287790 startingPage "78" @default.
- W3136287790 abstract "As a high-throughput data analysis technique, photon time stretching (PTS) is widely used in the monitoring of rare events such as cancer cells, rough waves, and the study of electronic and optical transient dynamics. The PTS technology relies on high-speed data collection, and the large amount of data generated poses a challenge to data storage and real-time processing. Therefore, how to use compatible optical methods to filter and process data in advance is particularly important. The time-lens proposed, based on the duality of time and space as an important data processing method derived from PTS, achieves imaging of time signals by controlling the phase information of the timing signals. In this paper, an optical neural network based on the time-lens (TL-ONN) is proposed, which applies the time-lens to the layer algorithm of the neural network to realize the forward transmission of one-dimensional data. The recognition function of this optical neural network for speech information is verified by simulation, and the test recognition accuracy reaches 95.35%. This architecture can be applied to feature extraction and classification, and is expected to be a breakthrough in detecting rare events such as cancer cell identification and screening." @default.
- W3136287790 created "2021-03-29" @default.
- W3136287790 creator A5000029789 @default.
- W3136287790 creator A5004425454 @default.
- W3136287790 creator A5031293241 @default.
- W3136287790 creator A5034304190 @default.
- W3136287790 creator A5036016529 @default.
- W3136287790 creator A5039909291 @default.
- W3136287790 creator A5045589563 @default.
- W3136287790 creator A5045671512 @default.
- W3136287790 creator A5046073205 @default.
- W3136287790 creator A5051873667 @default.
- W3136287790 creator A5075277705 @default.
- W3136287790 date "2021-03-15" @default.
- W3136287790 modified "2023-09-25" @default.
- W3136287790 title "Optical Machine Learning Using Time-Lens Deep Neural NetWorks" @default.
- W3136287790 cites W1567302070 @default.
- W3136287790 cites W1975693637 @default.
- W3136287790 cites W2084495976 @default.
- W3136287790 cites W2088575391 @default.
- W3136287790 cites W2257979135 @default.
- W3136287790 cites W2302517508 @default.
- W3136287790 cites W2335604872 @default.
- W3136287790 cites W2465344429 @default.
- W3136287790 cites W2554119837 @default.
- W3136287790 cites W2558462411 @default.
- W3136287790 cites W2570616269 @default.
- W3136287790 cites W2587524409 @default.
- W3136287790 cites W2605986931 @default.
- W3136287790 cites W2618515151 @default.
- W3136287790 cites W2750796620 @default.
- W3136287790 cites W2752849906 @default.
- W3136287790 cites W2758460571 @default.
- W3136287790 cites W2768956845 @default.
- W3136287790 cites W2798701005 @default.
- W3136287790 cites W2811251822 @default.
- W3136287790 cites W2883622473 @default.
- W3136287790 cites W2887566712 @default.
- W3136287790 cites W2888971284 @default.
- W3136287790 cites W2889672357 @default.
- W3136287790 cites W2904694042 @default.
- W3136287790 cites W2923528470 @default.
- W3136287790 cites W2946901414 @default.
- W3136287790 cites W2954291826 @default.
- W3136287790 cites W2961079966 @default.
- W3136287790 cites W2964231206 @default.
- W3136287790 cites W2966081953 @default.
- W3136287790 cites W2974813792 @default.
- W3136287790 cites W2989670361 @default.
- W3136287790 cites W2996008180 @default.
- W3136287790 doi "https://doi.org/10.3390/photonics8030078" @default.
- W3136287790 hasPublicationYear "2021" @default.
- W3136287790 type Work @default.
- W3136287790 sameAs 3136287790 @default.
- W3136287790 citedByCount "4" @default.
- W3136287790 countsByYear W31362877902022 @default.
- W3136287790 countsByYear W31362877902023 @default.
- W3136287790 crossrefType "journal-article" @default.
- W3136287790 hasAuthorship W3136287790A5000029789 @default.
- W3136287790 hasAuthorship W3136287790A5004425454 @default.
- W3136287790 hasAuthorship W3136287790A5031293241 @default.
- W3136287790 hasAuthorship W3136287790A5034304190 @default.
- W3136287790 hasAuthorship W3136287790A5036016529 @default.
- W3136287790 hasAuthorship W3136287790A5039909291 @default.
- W3136287790 hasAuthorship W3136287790A5045589563 @default.
- W3136287790 hasAuthorship W3136287790A5045671512 @default.
- W3136287790 hasAuthorship W3136287790A5046073205 @default.
- W3136287790 hasAuthorship W3136287790A5051873667 @default.
- W3136287790 hasAuthorship W3136287790A5075277705 @default.
- W3136287790 hasBestOaLocation W31362877901 @default.
- W3136287790 hasConcept C106131492 @default.
- W3136287790 hasConcept C111919701 @default.
- W3136287790 hasConcept C120665830 @default.
- W3136287790 hasConcept C121332964 @default.
- W3136287790 hasConcept C153180895 @default.
- W3136287790 hasConcept C15336307 @default.
- W3136287790 hasConcept C154945302 @default.
- W3136287790 hasConcept C31972630 @default.
- W3136287790 hasConcept C41008148 @default.
- W3136287790 hasConcept C50644808 @default.
- W3136287790 hasConcept C52622490 @default.
- W3136287790 hasConcept C557945733 @default.
- W3136287790 hasConcept C761482 @default.
- W3136287790 hasConcept C76155785 @default.
- W3136287790 hasConcept C81363708 @default.
- W3136287790 hasConcept C9390403 @default.
- W3136287790 hasConcept C98045186 @default.
- W3136287790 hasConceptScore W3136287790C106131492 @default.
- W3136287790 hasConceptScore W3136287790C111919701 @default.
- W3136287790 hasConceptScore W3136287790C120665830 @default.
- W3136287790 hasConceptScore W3136287790C121332964 @default.
- W3136287790 hasConceptScore W3136287790C153180895 @default.
- W3136287790 hasConceptScore W3136287790C15336307 @default.
- W3136287790 hasConceptScore W3136287790C154945302 @default.
- W3136287790 hasConceptScore W3136287790C31972630 @default.
- W3136287790 hasConceptScore W3136287790C41008148 @default.
- W3136287790 hasConceptScore W3136287790C50644808 @default.
- W3136287790 hasConceptScore W3136287790C52622490 @default.