Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136290781> ?p ?o ?g. }
- W3136290781 abstract "Abstract Light microscopy has become an indispensable tool for the life sciences, as it enables the rapid acquisition of three-dimensional images from the interior of living cells/tissues. Over the last decades, super-resolution light microscopy techniques have been developed, which allow a resolution up to an order of magnitude higher than that of conventional light microscopy. Those techniques require labelling of cellular structures with fluorescent probes exhibiting specific properties, which are supplied from outside and therefore have to surpass cell membranes. Currently, major efforts are undertaken to develop probes which can surpass cell membranes and exhibit the photophysical properties required for super-resolution imaging. However, the process of probe development is still based on a tedious and time consuming manual screening. An accurate computer based model that enables the prediction of the cell permeability based on their chemical structure would therefore be an invaluable asset for the development of fluorescent probes. Unfortunately, current models, which are based on multiple molecular descriptors, are not well suited for this task as they require high effort in the usage and exhibit moderate accuracy in their prediction. Here, we present a novel fragment based lipophilicity descriptor DeepFL-LogP, which was developed on the basis of a deep neural network. DeepFL-LogP exhibits excellent correlation with the experimental partition coefficient reference data (R2 = 0.892 and MSE = 0.359) of drug-like substances. Further a simple threshold permeability model on the basis of this descriptor allows to categorize the permeability of fluorescent probes with 96% accuracy. This novel descriptor is expected to largely simplify and speed up the development process for novel cell permeable fluorophores." @default.
- W3136290781 created "2021-03-29" @default.
- W3136290781 creator A5004495838 @default.
- W3136290781 creator A5005207871 @default.
- W3136290781 creator A5033061833 @default.
- W3136290781 creator A5056835190 @default.
- W3136290781 date "2021-03-26" @default.
- W3136290781 modified "2023-10-18" @default.
- W3136290781 title "Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP" @default.
- W3136290781 cites W142069827 @default.
- W3136290781 cites W1972156862 @default.
- W3136290781 cites W1982608460 @default.
- W3136290781 cites W1988315803 @default.
- W3136290781 cites W1988554806 @default.
- W3136290781 cites W2011041750 @default.
- W3136290781 cites W2048312836 @default.
- W3136290781 cites W2051602817 @default.
- W3136290781 cites W2061800084 @default.
- W3136290781 cites W2069072109 @default.
- W3136290781 cites W2070380977 @default.
- W3136290781 cites W2074328858 @default.
- W3136290781 cites W2085663480 @default.
- W3136290781 cites W2090996511 @default.
- W3136290781 cites W2126741025 @default.
- W3136290781 cites W2128677827 @default.
- W3136290781 cites W2139708791 @default.
- W3136290781 cites W2165602175 @default.
- W3136290781 cites W2166175870 @default.
- W3136290781 cites W2190773363 @default.
- W3136290781 cites W2313968233 @default.
- W3136290781 cites W2379628571 @default.
- W3136290781 cites W2466527730 @default.
- W3136290781 cites W2588698250 @default.
- W3136290781 cites W2593436234 @default.
- W3136290781 cites W2609522315 @default.
- W3136290781 cites W2624043698 @default.
- W3136290781 cites W2758148695 @default.
- W3136290781 cites W2791355014 @default.
- W3136290781 cites W2793396277 @default.
- W3136290781 cites W2904978210 @default.
- W3136290781 cites W2912898683 @default.
- W3136290781 cites W2976332861 @default.
- W3136290781 doi "https://doi.org/10.1038/s41598-021-86460-3" @default.
- W3136290781 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7997998" @default.
- W3136290781 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33772099" @default.
- W3136290781 hasPublicationYear "2021" @default.
- W3136290781 type Work @default.
- W3136290781 sameAs 3136290781 @default.
- W3136290781 citedByCount "21" @default.
- W3136290781 countsByYear W31362907812021 @default.
- W3136290781 countsByYear W31362907812022 @default.
- W3136290781 countsByYear W31362907812023 @default.
- W3136290781 crossrefType "journal-article" @default.
- W3136290781 hasAuthorship W3136290781A5004495838 @default.
- W3136290781 hasAuthorship W3136290781A5005207871 @default.
- W3136290781 hasAuthorship W3136290781A5033061833 @default.
- W3136290781 hasAuthorship W3136290781A5056835190 @default.
- W3136290781 hasBestOaLocation W31362907811 @default.
- W3136290781 hasConcept C121332964 @default.
- W3136290781 hasConcept C153180895 @default.
- W3136290781 hasConcept C154945302 @default.
- W3136290781 hasConcept C169274487 @default.
- W3136290781 hasConcept C185592680 @default.
- W3136290781 hasConcept C186060115 @default.
- W3136290781 hasConcept C192552737 @default.
- W3136290781 hasConcept C201399114 @default.
- W3136290781 hasConcept C2992270614 @default.
- W3136290781 hasConcept C2994297994 @default.
- W3136290781 hasConcept C41008148 @default.
- W3136290781 hasConcept C41625074 @default.
- W3136290781 hasConcept C43617362 @default.
- W3136290781 hasConcept C50644808 @default.
- W3136290781 hasConcept C55493867 @default.
- W3136290781 hasConcept C62520636 @default.
- W3136290781 hasConcept C86803240 @default.
- W3136290781 hasConcept C91881484 @default.
- W3136290781 hasConceptScore W3136290781C121332964 @default.
- W3136290781 hasConceptScore W3136290781C153180895 @default.
- W3136290781 hasConceptScore W3136290781C154945302 @default.
- W3136290781 hasConceptScore W3136290781C169274487 @default.
- W3136290781 hasConceptScore W3136290781C185592680 @default.
- W3136290781 hasConceptScore W3136290781C186060115 @default.
- W3136290781 hasConceptScore W3136290781C192552737 @default.
- W3136290781 hasConceptScore W3136290781C201399114 @default.
- W3136290781 hasConceptScore W3136290781C2992270614 @default.
- W3136290781 hasConceptScore W3136290781C2994297994 @default.
- W3136290781 hasConceptScore W3136290781C41008148 @default.
- W3136290781 hasConceptScore W3136290781C41625074 @default.
- W3136290781 hasConceptScore W3136290781C43617362 @default.
- W3136290781 hasConceptScore W3136290781C50644808 @default.
- W3136290781 hasConceptScore W3136290781C55493867 @default.
- W3136290781 hasConceptScore W3136290781C62520636 @default.
- W3136290781 hasConceptScore W3136290781C86803240 @default.
- W3136290781 hasConceptScore W3136290781C91881484 @default.
- W3136290781 hasIssue "1" @default.
- W3136290781 hasLocation W31362907811 @default.
- W3136290781 hasLocation W31362907812 @default.
- W3136290781 hasOpenAccess W3136290781 @default.
- W3136290781 hasPrimaryLocation W31362907811 @default.
- W3136290781 hasRelatedWork W1559185053 @default.