Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136293400> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3136293400 endingPage "592" @default.
- W3136293400 startingPage "519" @default.
- W3136293400 abstract "Let $(overline M,overline g)$ be a time- and space-oriented Lorentzian spin manifold, and let $M$ be a compact spacelike hypersurface of $overline M$ with induced Riemannian metric $g$ and second fundamental form $K$. If $(overline M,overline g)$ satisfies the dominant energy condition in a strict sense, then the Dirac--Witten operator of $Msubseteq overline M$ is an invertible, self-adjoint Fredholm operator. This allows us to use index theoretical methods in order to detect non-trivial homotopy groups in the space of initial on $M$ satisfying the dominant energy condition in a strict sense. The central tool will be a Lorentzian analogue of Hitchin's $alpha$-invariant. In case that the dominant energy condition only holds in a weak sense, the Dirac--Witten operator may be non-invertible, and we will study the kernel of this operator in this case. We will show that the kernel may only be non-trivial if $pi_1(M)$ is virtually solvable of derived length at most $2$. This allows to extend the index theoretical methods to spaces of initial data, satisfying the dominant energy condition in the weak sense. We will show further that a spinor $phi$ is in the kernel of the Dirac--Witten operator on $(M,g,K)$ if and only if $(M,g,K,phi)$ admits an extension to a Lorentzian manifold $(overline N,overline h)$ with parallel spinor $barphi$ such that $M$ is a Cauchy hypersurface of $(overline N,overline h)$, such that $g$ and $K$ are the induced metric and second fundamental form of $M$, respectively, and $phi$ is the restriction of $barphi$ to $M$." @default.
- W3136293400 created "2021-03-29" @default.
- W3136293400 creator A5024705645 @default.
- W3136293400 creator A5036755731 @default.
- W3136293400 date "2023-01-08" @default.
- W3136293400 modified "2023-09-27" @default.
- W3136293400 title "Dominant Energy Condition and Spinors on Lorentzian Manifolds" @default.
- W3136293400 cites W1480755397 @default.
- W3136293400 cites W1549409800 @default.
- W3136293400 cites W1562312491 @default.
- W3136293400 cites W1599691119 @default.
- W3136293400 cites W1606583418 @default.
- W3136293400 cites W1785197769 @default.
- W3136293400 cites W1968483170 @default.
- W3136293400 cites W1996806140 @default.
- W3136293400 cites W2007822005 @default.
- W3136293400 cites W2007970136 @default.
- W3136293400 cites W2029403139 @default.
- W3136293400 cites W2031482444 @default.
- W3136293400 cites W2032407276 @default.
- W3136293400 cites W2035914509 @default.
- W3136293400 cites W2050351112 @default.
- W3136293400 cites W2105973581 @default.
- W3136293400 cites W2159231972 @default.
- W3136293400 cites W2164631600 @default.
- W3136293400 cites W2238118744 @default.
- W3136293400 cites W2327835324 @default.
- W3136293400 cites W2332200728 @default.
- W3136293400 cites W2587101959 @default.
- W3136293400 cites W2902963325 @default.
- W3136293400 cites W2947833559 @default.
- W3136293400 cites W2964179867 @default.
- W3136293400 cites W2964294696 @default.
- W3136293400 cites W3104071945 @default.
- W3136293400 cites W3125020835 @default.
- W3136293400 cites W564927596 @default.
- W3136293400 cites W591493825 @default.
- W3136293400 cites W19964404 @default.
- W3136293400 doi "https://doi.org/10.1142/9789811273230_0016" @default.
- W3136293400 hasPublicationYear "2023" @default.
- W3136293400 type Work @default.
- W3136293400 sameAs 3136293400 @default.
- W3136293400 citedByCount "2" @default.
- W3136293400 countsByYear W31362934002021 @default.
- W3136293400 countsByYear W31362934002023 @default.
- W3136293400 crossrefType "book-chapter" @default.
- W3136293400 hasAuthorship W3136293400A5024705645 @default.
- W3136293400 hasAuthorship W3136293400A5036755731 @default.
- W3136293400 hasBestOaLocation W31362934002 @default.
- W3136293400 hasConcept C105795698 @default.
- W3136293400 hasConcept C121332964 @default.
- W3136293400 hasConcept C186370098 @default.
- W3136293400 hasConcept C202444582 @default.
- W3136293400 hasConcept C33332235 @default.
- W3136293400 hasConcept C33923547 @default.
- W3136293400 hasConcept C37914503 @default.
- W3136293400 hasConcept C43506125 @default.
- W3136293400 hasConceptScore W3136293400C105795698 @default.
- W3136293400 hasConceptScore W3136293400C121332964 @default.
- W3136293400 hasConceptScore W3136293400C186370098 @default.
- W3136293400 hasConceptScore W3136293400C202444582 @default.
- W3136293400 hasConceptScore W3136293400C33332235 @default.
- W3136293400 hasConceptScore W3136293400C33923547 @default.
- W3136293400 hasConceptScore W3136293400C37914503 @default.
- W3136293400 hasConceptScore W3136293400C43506125 @default.
- W3136293400 hasLocation W31362934001 @default.
- W3136293400 hasLocation W31362934002 @default.
- W3136293400 hasOpenAccess W3136293400 @default.
- W3136293400 hasPrimaryLocation W31362934001 @default.
- W3136293400 hasRelatedWork W1557945163 @default.
- W3136293400 hasRelatedWork W1976786570 @default.
- W3136293400 hasRelatedWork W1985218657 @default.
- W3136293400 hasRelatedWork W2002613727 @default.
- W3136293400 hasRelatedWork W2077203665 @default.
- W3136293400 hasRelatedWork W2096753949 @default.
- W3136293400 hasRelatedWork W2964103183 @default.
- W3136293400 hasRelatedWork W3090333079 @default.
- W3136293400 hasRelatedWork W3104021806 @default.
- W3136293400 hasRelatedWork W4249580765 @default.
- W3136293400 isParatext "false" @default.
- W3136293400 isRetracted "false" @default.
- W3136293400 magId "3136293400" @default.
- W3136293400 workType "book-chapter" @default.