Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136293451> ?p ?o ?g. }
- W3136293451 endingPage "975" @default.
- W3136293451 startingPage "951" @default.
- W3136293451 abstract "Ionospheric perturbations induced by tsunamis and earthquakes can be used for tsunami early warning and remote sensing of earthquakes, provided the perturbations are characterized properly to distinguish them from the ones caused by other sources. The ionospheric perturbations are increasingly being obtained from Global Positioning System (GPS) based Total Electron Content (TEC) measurements sampled at uniform time intervals. However, the sampling is not uniform in space. The nonuniform spatial sampling along the GPS satellite tracks introduces aliasing if it is not accounted while computing the ionospheric perturbations. All the methods hitherto used to detect the co-seismic and tsunamigenic ionospheric perturbations did not account the nonuniform spatial sampling while computing these perturbations. In addition, the residual approach used to obtain the perturbations by detrending the TEC time series using high-order polynomial fit introduces artifacts. These aliasing and artifacts corrupt amplitude, Signal-to-Noise Ratio (SNR), phase, and frequency of ionospheric perturbations which are vital to distinguish the perturbations induced by tsunamis and earthquakes from the rest. We show that Spatio-Periodic Leveling Algorithm (SPLA) successfully removes such aliasing and artifacts. The efficiency of SPLA in removing the aliases and artifacts is validated under two simulated scenarios, and using GPS observations carried out during two natural disasters – the 2004 Indian Ocean tsunami and the 2015 Nepal-Gorkha earthquake. We, further, studied the severity of aliasing and artifacts on co-seismic and tsunamigenic perturbations by analyzing its characteristics employing SNR, spatiotemporal, and wavelet analyses. The results reveal that removal of aliasing and artifacts using SPLA i) increases the SNR up to ∼149% compared to the residual method and ∼39% compared to the differential method, ii) distinctly resolves signals from sharp static variations, and iii) detects 50% more co-seismic ionospheric perturbations and 25% more tsunami-induced ionospheric perturbations in the two events studied. Cross-correlation of the perturbation time series obtained using the residual method and SPLA reveals that aliasing and artifacts shift the time of occurrence by −7.64 minutes to +4.21 minutes. Further, the results show that the SPLA efficiently detects the ionospheric perturbations at low elevation angles, thereby removes the need of applying elevation cut-off and increases the area of ionospheric exploration of a GPS receiver." @default.
- W3136293451 created "2021-03-29" @default.
- W3136293451 creator A5006481655 @default.
- W3136293451 creator A5022990775 @default.
- W3136293451 date "2022-01-01" @default.
- W3136293451 modified "2023-10-10" @default.
- W3136293451 title "Detecting aliasing and artifact free co-seismic and tsunamigenic ionospheric perturbations using GPS" @default.
- W3136293451 cites W1591032079 @default.
- W3136293451 cites W1689169212 @default.
- W3136293451 cites W1890897309 @default.
- W3136293451 cites W1906214768 @default.
- W3136293451 cites W1973465014 @default.
- W3136293451 cites W1986316936 @default.
- W3136293451 cites W1994174880 @default.
- W3136293451 cites W2003537575 @default.
- W3136293451 cites W2012780287 @default.
- W3136293451 cites W2013130542 @default.
- W3136293451 cites W2023409028 @default.
- W3136293451 cites W2058160370 @default.
- W3136293451 cites W2078519807 @default.
- W3136293451 cites W2097890888 @default.
- W3136293451 cites W2103309597 @default.
- W3136293451 cites W2108970342 @default.
- W3136293451 cites W2112615418 @default.
- W3136293451 cites W2113797947 @default.
- W3136293451 cites W2124459709 @default.
- W3136293451 cites W2133905051 @default.
- W3136293451 cites W2168987504 @default.
- W3136293451 cites W2170544886 @default.
- W3136293451 cites W2473870024 @default.
- W3136293451 cites W2485430525 @default.
- W3136293451 cites W254665791 @default.
- W3136293451 cites W2605613137 @default.
- W3136293451 cites W2720231450 @default.
- W3136293451 cites W2758829998 @default.
- W3136293451 cites W2785652429 @default.
- W3136293451 cites W2786618332 @default.
- W3136293451 cites W2905415500 @default.
- W3136293451 cites W2912286772 @default.
- W3136293451 cites W2991768750 @default.
- W3136293451 cites W3035037672 @default.
- W3136293451 doi "https://doi.org/10.1016/j.asr.2021.10.040" @default.
- W3136293451 hasPublicationYear "2022" @default.
- W3136293451 type Work @default.
- W3136293451 sameAs 3136293451 @default.
- W3136293451 citedByCount "1" @default.
- W3136293451 countsByYear W31362934512022 @default.
- W3136293451 crossrefType "journal-article" @default.
- W3136293451 hasAuthorship W3136293451A5006481655 @default.
- W3136293451 hasAuthorship W3136293451A5022990775 @default.
- W3136293451 hasBestOaLocation W31362934511 @default.
- W3136293451 hasConcept C106131492 @default.
- W3136293451 hasConcept C116403925 @default.
- W3136293451 hasConcept C121332964 @default.
- W3136293451 hasConcept C127313418 @default.
- W3136293451 hasConcept C1276947 @default.
- W3136293451 hasConcept C13280743 @default.
- W3136293451 hasConcept C140779682 @default.
- W3136293451 hasConcept C165391973 @default.
- W3136293451 hasConcept C176379880 @default.
- W3136293451 hasConcept C19269812 @default.
- W3136293451 hasConcept C31972630 @default.
- W3136293451 hasConcept C4069607 @default.
- W3136293451 hasConcept C41008148 @default.
- W3136293451 hasConcept C47432892 @default.
- W3136293451 hasConcept C60229501 @default.
- W3136293451 hasConcept C62649853 @default.
- W3136293451 hasConcept C76155785 @default.
- W3136293451 hasConcept C8058405 @default.
- W3136293451 hasConceptScore W3136293451C106131492 @default.
- W3136293451 hasConceptScore W3136293451C116403925 @default.
- W3136293451 hasConceptScore W3136293451C121332964 @default.
- W3136293451 hasConceptScore W3136293451C127313418 @default.
- W3136293451 hasConceptScore W3136293451C1276947 @default.
- W3136293451 hasConceptScore W3136293451C13280743 @default.
- W3136293451 hasConceptScore W3136293451C140779682 @default.
- W3136293451 hasConceptScore W3136293451C165391973 @default.
- W3136293451 hasConceptScore W3136293451C176379880 @default.
- W3136293451 hasConceptScore W3136293451C19269812 @default.
- W3136293451 hasConceptScore W3136293451C31972630 @default.
- W3136293451 hasConceptScore W3136293451C4069607 @default.
- W3136293451 hasConceptScore W3136293451C41008148 @default.
- W3136293451 hasConceptScore W3136293451C47432892 @default.
- W3136293451 hasConceptScore W3136293451C60229501 @default.
- W3136293451 hasConceptScore W3136293451C62649853 @default.
- W3136293451 hasConceptScore W3136293451C76155785 @default.
- W3136293451 hasConceptScore W3136293451C8058405 @default.
- W3136293451 hasFunder F4320320721 @default.
- W3136293451 hasFunder F4320327867 @default.
- W3136293451 hasIssue "2" @default.
- W3136293451 hasLocation W31362934511 @default.
- W3136293451 hasLocation W31362934512 @default.
- W3136293451 hasLocation W31362934513 @default.
- W3136293451 hasLocation W31362934514 @default.
- W3136293451 hasOpenAccess W3136293451 @default.
- W3136293451 hasPrimaryLocation W31362934511 @default.
- W3136293451 hasRelatedWork W1989070650 @default.
- W3136293451 hasRelatedWork W1992137669 @default.