Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136302314> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3136302314 abstract "The transition away from carbon-based energy sources poses several challenges for the operation of electricity distribution systems. Increasing shares of distributed energy resources (e.g. renewable energy generators, electric vehicles) and internet-connected sensing and control devices (e.g. smart heating and cooling) require new tools to support accurate, data-driven decision making. Modelling the effect of such growing complexity in the electrical grid is possible in principle using state-of-the-art power-power flow models. In practice, the detailed information needed for these physical simulations may be unknown or prohibitively expensive to obtain. Hence, data-driven approaches to power systems modelling, including feed-forward neural networks and auto-encoders, have been studied to leverage the increasing availability of sensor data, but have seen limited practical adoption due to lack of transparency and inefficiencies on large-scale problems. Our work addresses this gap by proposing a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs). The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality when compared with traditional machine-learning models with similar accuracy. Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services for a distribution system operator participating in an energy flexibility market." @default.
- W3136302314 created "2021-03-29" @default.
- W3136302314 creator A5012252516 @default.
- W3136302314 creator A5023975897 @default.
- W3136302314 creator A5063888848 @default.
- W3136302314 creator A5069269028 @default.
- W3136302314 creator A5086267750 @default.
- W3136302314 date "2020-12-10" @default.
- W3136302314 modified "2023-10-05" @default.
- W3136302314 title "Knowledge- and Data-driven Services for Energy Systems using Graph Neural Networks" @default.
- W3136302314 cites W1598852905 @default.
- W3136302314 cites W1979418981 @default.
- W3136302314 cites W2116341502 @default.
- W3136302314 cites W2140900554 @default.
- W3136302314 cites W2159645006 @default.
- W3136302314 cites W2764233668 @default.
- W3136302314 cites W2768682953 @default.
- W3136302314 cites W2900620189 @default.
- W3136302314 cites W2912300636 @default.
- W3136302314 cites W2939939530 @default.
- W3136302314 cites W2952341912 @default.
- W3136302314 cites W2963599963 @default.
- W3136302314 cites W2963750652 @default.
- W3136302314 cites W2963762469 @default.
- W3136302314 cites W3090789587 @default.
- W3136302314 cites W3100161757 @default.
- W3136302314 doi "https://doi.org/10.1109/bigdata50022.2020.9377845" @default.
- W3136302314 hasPublicationYear "2020" @default.
- W3136302314 type Work @default.
- W3136302314 sameAs 3136302314 @default.
- W3136302314 citedByCount "9" @default.
- W3136302314 countsByYear W31363023142021 @default.
- W3136302314 countsByYear W31363023142022 @default.
- W3136302314 countsByYear W31363023142023 @default.
- W3136302314 crossrefType "proceedings-article" @default.
- W3136302314 hasAuthorship W3136302314A5012252516 @default.
- W3136302314 hasAuthorship W3136302314A5023975897 @default.
- W3136302314 hasAuthorship W3136302314A5063888848 @default.
- W3136302314 hasAuthorship W3136302314A5069269028 @default.
- W3136302314 hasAuthorship W3136302314A5086267750 @default.
- W3136302314 hasBestOaLocation W31363023142 @default.
- W3136302314 hasConcept C10558101 @default.
- W3136302314 hasConcept C119599485 @default.
- W3136302314 hasConcept C120314980 @default.
- W3136302314 hasConcept C121332964 @default.
- W3136302314 hasConcept C127413603 @default.
- W3136302314 hasConcept C153083717 @default.
- W3136302314 hasConcept C154945302 @default.
- W3136302314 hasConcept C163258240 @default.
- W3136302314 hasConcept C187691185 @default.
- W3136302314 hasConcept C188573790 @default.
- W3136302314 hasConcept C2524010 @default.
- W3136302314 hasConcept C33923547 @default.
- W3136302314 hasConcept C41008148 @default.
- W3136302314 hasConcept C49937458 @default.
- W3136302314 hasConcept C544738498 @default.
- W3136302314 hasConcept C62520636 @default.
- W3136302314 hasConcept C89227174 @default.
- W3136302314 hasConceptScore W3136302314C10558101 @default.
- W3136302314 hasConceptScore W3136302314C119599485 @default.
- W3136302314 hasConceptScore W3136302314C120314980 @default.
- W3136302314 hasConceptScore W3136302314C121332964 @default.
- W3136302314 hasConceptScore W3136302314C127413603 @default.
- W3136302314 hasConceptScore W3136302314C153083717 @default.
- W3136302314 hasConceptScore W3136302314C154945302 @default.
- W3136302314 hasConceptScore W3136302314C163258240 @default.
- W3136302314 hasConceptScore W3136302314C187691185 @default.
- W3136302314 hasConceptScore W3136302314C188573790 @default.
- W3136302314 hasConceptScore W3136302314C2524010 @default.
- W3136302314 hasConceptScore W3136302314C33923547 @default.
- W3136302314 hasConceptScore W3136302314C41008148 @default.
- W3136302314 hasConceptScore W3136302314C49937458 @default.
- W3136302314 hasConceptScore W3136302314C544738498 @default.
- W3136302314 hasConceptScore W3136302314C62520636 @default.
- W3136302314 hasConceptScore W3136302314C89227174 @default.
- W3136302314 hasFunder F4320334678 @default.
- W3136302314 hasLocation W31363023141 @default.
- W3136302314 hasLocation W31363023142 @default.
- W3136302314 hasOpenAccess W3136302314 @default.
- W3136302314 hasPrimaryLocation W31363023141 @default.
- W3136302314 hasRelatedWork W1498845059 @default.
- W3136302314 hasRelatedWork W1596201972 @default.
- W3136302314 hasRelatedWork W1943795333 @default.
- W3136302314 hasRelatedWork W1992517826 @default.
- W3136302314 hasRelatedWork W2006678967 @default.
- W3136302314 hasRelatedWork W2139331021 @default.
- W3136302314 hasRelatedWork W2160425906 @default.
- W3136302314 hasRelatedWork W2367503426 @default.
- W3136302314 hasRelatedWork W2380963126 @default.
- W3136302314 hasRelatedWork W2900235865 @default.
- W3136302314 isParatext "false" @default.
- W3136302314 isRetracted "false" @default.
- W3136302314 magId "3136302314" @default.
- W3136302314 workType "article" @default.