Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136302848> ?p ?o ?g. }
- W3136302848 abstract "Abstract Background In the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high risk for short- and long-term morbidity and mortality. Machine learning (ML) has promise to address research priorities and improve delirium outcomes. However, due to clinical and billing conventions, delirium is often inconsistently or incompletely labeled in electronic health record (EHR) datasets. Here, we identify clinical actions abstracted from clinical guidelines in electronic health records (EHR) data that indicate risk of delirium among intensive care unit (ICU) patients. We develop a novel prediction model to label patients with delirium based on a large data set and assess model performance. Methods EHR data on 48,451 admissions from 2001 to 2012, available through Medical Information Mart for Intensive Care-III database (MIMIC-III), was used to identify features to develop our prediction models. Five binary ML classification models (Logistic Regression; Classification and Regression Trees; Random Forests; Naïve Bayes; and Support Vector Machines) were fit and ranked by Area Under the Curve (AUC) scores. We compared our best model with two models previously proposed in the literature for goodness of fit, precision, and through biological validation. Results Our best performing model with threshold reclassification for predicting delirium was based on a multiple logistic regression using the 31 clinical actions (AUC 0.83). Our model out performed other proposed models by biological validation on clinically meaningful, delirium-associated outcomes. Conclusions Hurdles in identifying accurate labels in large-scale datasets limit clinical applications of ML in delirium. We developed a novel labeling model for delirium in the ICU using a large, public data set. By using guideline-directed clinical actions independent from risk factors, treatments, and outcomes as model predictors, our classifier could be used as a delirium label for future clinically targeted models." @default.
- W3136302848 created "2021-03-29" @default.
- W3136302848 creator A5065317618 @default.
- W3136302848 creator A5066837969 @default.
- W3136302848 creator A5087086524 @default.
- W3136302848 date "2021-03-09" @default.
- W3136302848 modified "2023-09-23" @default.
- W3136302848 title "A novel model to label delirium in an intensive care unit from clinician actions" @default.
- W3136302848 cites W1931998430 @default.
- W3136302848 cites W1983471590 @default.
- W3136302848 cites W1997057722 @default.
- W3136302848 cites W2006617902 @default.
- W3136302848 cites W2009190245 @default.
- W3136302848 cites W2037614372 @default.
- W3136302848 cites W2040353199 @default.
- W3136302848 cites W2054232191 @default.
- W3136302848 cites W2060706356 @default.
- W3136302848 cites W2075894130 @default.
- W3136302848 cites W2078271269 @default.
- W3136302848 cites W2079916073 @default.
- W3136302848 cites W2097804942 @default.
- W3136302848 cites W2108485082 @default.
- W3136302848 cites W2109885060 @default.
- W3136302848 cites W2130271602 @default.
- W3136302848 cites W2138141660 @default.
- W3136302848 cites W2141710162 @default.
- W3136302848 cites W2143617649 @default.
- W3136302848 cites W2152575748 @default.
- W3136302848 cites W2162800060 @default.
- W3136302848 cites W2181465509 @default.
- W3136302848 cites W2228053454 @default.
- W3136302848 cites W2325309608 @default.
- W3136302848 cites W2396881363 @default.
- W3136302848 cites W2417041886 @default.
- W3136302848 cites W2612865085 @default.
- W3136302848 cites W2757504960 @default.
- W3136302848 cites W2762696225 @default.
- W3136302848 cites W2777024363 @default.
- W3136302848 cites W2786554073 @default.
- W3136302848 cites W2793122726 @default.
- W3136302848 cites W2801468842 @default.
- W3136302848 cites W2885408863 @default.
- W3136302848 cites W2888424845 @default.
- W3136302848 cites W2894882852 @default.
- W3136302848 cites W2900559149 @default.
- W3136302848 cites W2911964244 @default.
- W3136302848 cites W2975869387 @default.
- W3136302848 cites W3020561822 @default.
- W3136302848 cites W3032612410 @default.
- W3136302848 cites W3101973032 @default.
- W3136302848 cites W4234698323 @default.
- W3136302848 cites W4239510810 @default.
- W3136302848 cites W4242317440 @default.
- W3136302848 doi "https://doi.org/10.1186/s12911-021-01461-6" @default.
- W3136302848 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7941123" @default.
- W3136302848 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33750375" @default.
- W3136302848 hasPublicationYear "2021" @default.
- W3136302848 type Work @default.
- W3136302848 sameAs 3136302848 @default.
- W3136302848 citedByCount "7" @default.
- W3136302848 countsByYear W31363028482022 @default.
- W3136302848 countsByYear W31363028482023 @default.
- W3136302848 crossrefType "journal-article" @default.
- W3136302848 hasAuthorship W3136302848A5065317618 @default.
- W3136302848 hasAuthorship W3136302848A5066837969 @default.
- W3136302848 hasAuthorship W3136302848A5087086524 @default.
- W3136302848 hasBestOaLocation W31363028481 @default.
- W3136302848 hasConcept C119857082 @default.
- W3136302848 hasConcept C12267149 @default.
- W3136302848 hasConcept C124101348 @default.
- W3136302848 hasConcept C126322002 @default.
- W3136302848 hasConcept C138816342 @default.
- W3136302848 hasConcept C145642194 @default.
- W3136302848 hasConcept C151956035 @default.
- W3136302848 hasConcept C154945302 @default.
- W3136302848 hasConcept C159110408 @default.
- W3136302848 hasConcept C177713679 @default.
- W3136302848 hasConcept C195910791 @default.
- W3136302848 hasConcept C2776376669 @default.
- W3136302848 hasConcept C2779753318 @default.
- W3136302848 hasConcept C2987404301 @default.
- W3136302848 hasConcept C41008148 @default.
- W3136302848 hasConcept C52001869 @default.
- W3136302848 hasConcept C71924100 @default.
- W3136302848 hasConceptScore W3136302848C119857082 @default.
- W3136302848 hasConceptScore W3136302848C12267149 @default.
- W3136302848 hasConceptScore W3136302848C124101348 @default.
- W3136302848 hasConceptScore W3136302848C126322002 @default.
- W3136302848 hasConceptScore W3136302848C138816342 @default.
- W3136302848 hasConceptScore W3136302848C145642194 @default.
- W3136302848 hasConceptScore W3136302848C151956035 @default.
- W3136302848 hasConceptScore W3136302848C154945302 @default.
- W3136302848 hasConceptScore W3136302848C159110408 @default.
- W3136302848 hasConceptScore W3136302848C177713679 @default.
- W3136302848 hasConceptScore W3136302848C195910791 @default.
- W3136302848 hasConceptScore W3136302848C2776376669 @default.
- W3136302848 hasConceptScore W3136302848C2779753318 @default.
- W3136302848 hasConceptScore W3136302848C2987404301 @default.
- W3136302848 hasConceptScore W3136302848C41008148 @default.
- W3136302848 hasConceptScore W3136302848C52001869 @default.