Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136304627> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3136304627 abstract "Nowadays, many researchers study on characterizing complex and dynamic traffic environments by modeling the spatio-temporal dependencies in a road network for traffic predictions. However, existing works fail to investigate comprehensive spatio-temporal dependencies, because most of them ignore the spatial dependencies from the topological graph structure information in the road network, or only consider the temporal dependencies between fine-grained time slots whereas ignore those among coarse-grained time periods, in which a time period is composed of a number of time slots. To this end, we propose a new encoder-decoder framework called GAMIT with graphical space and multi-grained time by developing a spatiotemporal recurrent neural network (STRNN) for traffic predictions, where the graphical space consists of spatial networks which represent road networks. STRNN first devises a spatiotemporal convolution block to capture the fine-grained spatiotemporal dependencies between time slots in the road network. Then, STRNN uses the recurrent architecture to catch the coarsegrained spatio-temporal dependencies among time periods. The encoder finally applies STRNN to learn the multi-grained spatiotemporal dependencies which are fed into the decoder for computing traffic predictions based on STRNN as well. To evaluate the performance of GAMIT, we conduct extensive experiments on two real traffic flow datasets. Experimental results show that GAMIT outperforms the state-of-the-art traffic prediction models." @default.
- W3136304627 created "2021-03-29" @default.
- W3136304627 creator A5006968903 @default.
- W3136304627 creator A5018287566 @default.
- W3136304627 creator A5022507249 @default.
- W3136304627 date "2020-12-10" @default.
- W3136304627 modified "2023-10-02" @default.
- W3136304627 title "GAMIT: A New Encoder-Decoder Framework with Graphical Space and Multi-grained Time for Traffic Predictions" @default.
- W3136304627 cites W2064675550 @default.
- W3136304627 cites W2069929199 @default.
- W3136304627 cites W2079662306 @default.
- W3136304627 cites W2157331557 @default.
- W3136304627 cites W2165991108 @default.
- W3136304627 cites W2564701384 @default.
- W3136304627 cites W2579495707 @default.
- W3136304627 cites W2809366716 @default.
- W3136304627 cites W2900105886 @default.
- W3136304627 cites W2901504064 @default.
- W3136304627 cites W2903871660 @default.
- W3136304627 cites W2904832339 @default.
- W3136304627 cites W2906175158 @default.
- W3136304627 cites W2911826336 @default.
- W3136304627 cites W2964319113 @default.
- W3136304627 cites W2967781079 @default.
- W3136304627 cites W2978023058 @default.
- W3136304627 cites W2998436408 @default.
- W3136304627 doi "https://doi.org/10.1109/bigdata50022.2020.9378143" @default.
- W3136304627 hasPublicationYear "2020" @default.
- W3136304627 type Work @default.
- W3136304627 sameAs 3136304627 @default.
- W3136304627 citedByCount "3" @default.
- W3136304627 countsByYear W31363046272022 @default.
- W3136304627 countsByYear W31363046272023 @default.
- W3136304627 crossrefType "proceedings-article" @default.
- W3136304627 hasAuthorship W3136304627A5006968903 @default.
- W3136304627 hasAuthorship W3136304627A5018287566 @default.
- W3136304627 hasAuthorship W3136304627A5022507249 @default.
- W3136304627 hasConcept C111919701 @default.
- W3136304627 hasConcept C118505674 @default.
- W3136304627 hasConcept C124101348 @default.
- W3136304627 hasConcept C132525143 @default.
- W3136304627 hasConcept C41008148 @default.
- W3136304627 hasConcept C79403827 @default.
- W3136304627 hasConcept C80444323 @default.
- W3136304627 hasConceptScore W3136304627C111919701 @default.
- W3136304627 hasConceptScore W3136304627C118505674 @default.
- W3136304627 hasConceptScore W3136304627C124101348 @default.
- W3136304627 hasConceptScore W3136304627C132525143 @default.
- W3136304627 hasConceptScore W3136304627C41008148 @default.
- W3136304627 hasConceptScore W3136304627C79403827 @default.
- W3136304627 hasConceptScore W3136304627C80444323 @default.
- W3136304627 hasLocation W31363046271 @default.
- W3136304627 hasOpenAccess W3136304627 @default.
- W3136304627 hasPrimaryLocation W31363046271 @default.
- W3136304627 hasRelatedWork W1547494151 @default.
- W3136304627 hasRelatedWork W2014589784 @default.
- W3136304627 hasRelatedWork W2275988210 @default.
- W3136304627 hasRelatedWork W2385621972 @default.
- W3136304627 hasRelatedWork W2547835662 @default.
- W3136304627 hasRelatedWork W2589098947 @default.
- W3136304627 hasRelatedWork W2771022762 @default.
- W3136304627 hasRelatedWork W2807289511 @default.
- W3136304627 hasRelatedWork W3006929122 @default.
- W3136304627 hasRelatedWork W4231964008 @default.
- W3136304627 isParatext "false" @default.
- W3136304627 isRetracted "false" @default.
- W3136304627 magId "3136304627" @default.
- W3136304627 workType "article" @default.