Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136313296> ?p ?o ?g. }
- W3136313296 abstract "In this work, we propose a method based on Deep-Learning and Convolutional Neural Network (CNN) ensemble fine-tuning for the task of remote sensing imagery registration and processing. Our method is based on the CNN transfer learning technique that allows the use of large-scale models that are already pre-trained on big general datasets and fine-tunes them for a particular application area. This approach can significantly decrease the needed size of the training set, for cases where such big training datasets are not available, and improve the quality of classification using a larger CNN or an ensemble of CNNs. This paper addresses the challenges encountered at each stage of the proposed pipeline. For image registration, objects of predefined type are detected, such as roads with hardcover and buildings using a CNN ensemble. Also, a CNN ensemble is used to detect undesirable structures in the image, such as clouds or rocks on the agricultural fields. Our image segmentation method can be used for image matching and fusion. To test our approach, we use an annotated dataset from the Kaggle contest Dstl Satellite Imagery Feature Detection, UC Merced Land Use Dataset, and a custom annotated dataset of remote sensing imagery of agricultural areas." @default.
- W3136313296 created "2021-03-29" @default.
- W3136313296 creator A5009094578 @default.
- W3136313296 creator A5025202119 @default.
- W3136313296 creator A5053225136 @default.
- W3136313296 creator A5056903101 @default.
- W3136313296 creator A5079763100 @default.
- W3136313296 date "2020-12-10" @default.
- W3136313296 modified "2023-10-13" @default.
- W3136313296 title "An Innovative Framework for Supporting Remote Sensing in Image Processing Systems via Deep Transfer Learning" @default.
- W3136313296 cites W1553404127 @default.
- W3136313296 cites W1581573489 @default.
- W3136313296 cites W1616462885 @default.
- W3136313296 cites W1859302478 @default.
- W3136313296 cites W1963943638 @default.
- W3136313296 cites W2019778169 @default.
- W3136313296 cites W2056132907 @default.
- W3136313296 cites W2061119986 @default.
- W3136313296 cites W2091825929 @default.
- W3136313296 cites W2095704239 @default.
- W3136313296 cites W2098676252 @default.
- W3136313296 cites W2101544546 @default.
- W3136313296 cites W2102503069 @default.
- W3136313296 cites W2115191221 @default.
- W3136313296 cites W2115878022 @default.
- W3136313296 cites W2117539524 @default.
- W3136313296 cites W2118420236 @default.
- W3136313296 cites W2118980630 @default.
- W3136313296 cites W2124386111 @default.
- W3136313296 cites W2124612611 @default.
- W3136313296 cites W2134845968 @default.
- W3136313296 cites W2151103935 @default.
- W3136313296 cites W2153829582 @default.
- W3136313296 cites W2163605009 @default.
- W3136313296 cites W2165698076 @default.
- W3136313296 cites W2166916857 @default.
- W3136313296 cites W2168046285 @default.
- W3136313296 cites W2253429366 @default.
- W3136313296 cites W2253590344 @default.
- W3136313296 cites W2291389488 @default.
- W3136313296 cites W2397175233 @default.
- W3136313296 cites W2404400986 @default.
- W3136313296 cites W2480418144 @default.
- W3136313296 cites W2515486462 @default.
- W3136313296 cites W2548491386 @default.
- W3136313296 cites W2559785631 @default.
- W3136313296 cites W2566143549 @default.
- W3136313296 cites W2613718673 @default.
- W3136313296 cites W2801477643 @default.
- W3136313296 cites W2808896182 @default.
- W3136313296 cites W2892946488 @default.
- W3136313296 cites W2898205548 @default.
- W3136313296 cites W2910886171 @default.
- W3136313296 cites W2955547856 @default.
- W3136313296 cites W2962861647 @default.
- W3136313296 cites W2962945412 @default.
- W3136313296 cites W2962958773 @default.
- W3136313296 cites W2963881378 @default.
- W3136313296 doi "https://doi.org/10.1109/bigdata50022.2020.9378306" @default.
- W3136313296 hasPublicationYear "2020" @default.
- W3136313296 type Work @default.
- W3136313296 sameAs 3136313296 @default.
- W3136313296 citedByCount "1" @default.
- W3136313296 countsByYear W31363132962021 @default.
- W3136313296 crossrefType "proceedings-article" @default.
- W3136313296 hasAuthorship W3136313296A5009094578 @default.
- W3136313296 hasAuthorship W3136313296A5025202119 @default.
- W3136313296 hasAuthorship W3136313296A5053225136 @default.
- W3136313296 hasAuthorship W3136313296A5056903101 @default.
- W3136313296 hasAuthorship W3136313296A5079763100 @default.
- W3136313296 hasConcept C107457646 @default.
- W3136313296 hasConcept C108583219 @default.
- W3136313296 hasConcept C115961682 @default.
- W3136313296 hasConcept C150899416 @default.
- W3136313296 hasConcept C154945302 @default.
- W3136313296 hasConcept C31972630 @default.
- W3136313296 hasConcept C41008148 @default.
- W3136313296 hasConcept C9417928 @default.
- W3136313296 hasConceptScore W3136313296C107457646 @default.
- W3136313296 hasConceptScore W3136313296C108583219 @default.
- W3136313296 hasConceptScore W3136313296C115961682 @default.
- W3136313296 hasConceptScore W3136313296C150899416 @default.
- W3136313296 hasConceptScore W3136313296C154945302 @default.
- W3136313296 hasConceptScore W3136313296C31972630 @default.
- W3136313296 hasConceptScore W3136313296C41008148 @default.
- W3136313296 hasConceptScore W3136313296C9417928 @default.
- W3136313296 hasLocation W31363132961 @default.
- W3136313296 hasLocation W31363132962 @default.
- W3136313296 hasOpenAccess W3136313296 @default.
- W3136313296 hasPrimaryLocation W31363132961 @default.
- W3136313296 hasRelatedWork W2951211570 @default.
- W3136313296 hasRelatedWork W3023427754 @default.
- W3136313296 hasRelatedWork W3131673289 @default.
- W3136313296 hasRelatedWork W3167935049 @default.
- W3136313296 hasRelatedWork W3178390372 @default.
- W3136313296 hasRelatedWork W3192840557 @default.
- W3136313296 hasRelatedWork W3198847674 @default.
- W3136313296 hasRelatedWork W4206357785 @default.
- W3136313296 hasRelatedWork W4281381188 @default.
- W3136313296 hasRelatedWork W4375928479 @default.