Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136321522> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3136321522 endingPage "138" @default.
- W3136321522 startingPage "138" @default.
- W3136321522 abstract "Data science and machine-learning techniques help banks to optimize enterprise operations, enhance risk analyses and gain competitive advantage. There is a vast amount of research in credit risk, but to our knowledge, none of them uses credit registry as a data source to model the probability of default for individual clients. The goal of this paper is to evaluate different machine-learning models to create accurate model for credit risk assessment using the data from the real credit registry dataset of the Central Bank of Republic of North Macedonia. We strongly believe that the model developed in this research will be an additional source of valuable information to commercial banks, by leveraging historical data for all the population of the country in all the commercial banks. Thus, in this research, we compare five machine-learning models to classify credit risk data, i.e., logistic regression, decision tree, random forest, support vector machines (SVM) and neural network. We evaluate the five models using different machine-learning metrics, and we propose a model based on credit registry data from the central bank with detailed methodology that can predict the credit risk based on credit history of the population in the country. Our results show that the best accuracy is achieved by using decision tree performing on imbalanced data with and without scaling, followed by random forest and linear regression." @default.
- W3136321522 created "2021-03-29" @default.
- W3136321522 creator A5014847368 @default.
- W3136321522 creator A5037207344 @default.
- W3136321522 creator A5086627627 @default.
- W3136321522 date "2021-03-23" @default.
- W3136321522 modified "2023-09-30" @default.
- W3136321522 title "Credit Risk Model Based on Central Bank Credit Registry Data" @default.
- W3136321522 cites W1966716734 @default.
- W3136321522 cites W1998092191 @default.
- W3136321522 cites W2019880039 @default.
- W3136321522 cites W2051731935 @default.
- W3136321522 cites W2056221673 @default.
- W3136321522 cites W2102843519 @default.
- W3136321522 cites W2103780778 @default.
- W3136321522 cites W2148143831 @default.
- W3136321522 cites W2155653793 @default.
- W3136321522 cites W2586297576 @default.
- W3136321522 cites W2789893186 @default.
- W3136321522 cites W2792224072 @default.
- W3136321522 cites W2804380031 @default.
- W3136321522 cites W2807102641 @default.
- W3136321522 cites W2896122694 @default.
- W3136321522 cites W2923437336 @default.
- W3136321522 cites W2938597499 @default.
- W3136321522 cites W2964093981 @default.
- W3136321522 cites W2989446870 @default.
- W3136321522 cites W2999446911 @default.
- W3136321522 cites W3045991306 @default.
- W3136321522 cites W3046440806 @default.
- W3136321522 cites W3080621577 @default.
- W3136321522 cites W3121588992 @default.
- W3136321522 doi "https://doi.org/10.3390/jrfm14030138" @default.
- W3136321522 hasPublicationYear "2021" @default.
- W3136321522 type Work @default.
- W3136321522 sameAs 3136321522 @default.
- W3136321522 citedByCount "10" @default.
- W3136321522 countsByYear W31363215222021 @default.
- W3136321522 countsByYear W31363215222022 @default.
- W3136321522 countsByYear W31363215222023 @default.
- W3136321522 crossrefType "journal-article" @default.
- W3136321522 hasAuthorship W3136321522A5014847368 @default.
- W3136321522 hasAuthorship W3136321522A5037207344 @default.
- W3136321522 hasAuthorship W3136321522A5086627627 @default.
- W3136321522 hasBestOaLocation W31363215221 @default.
- W3136321522 hasConcept C119857082 @default.
- W3136321522 hasConcept C12267149 @default.
- W3136321522 hasConcept C144133560 @default.
- W3136321522 hasConcept C151956035 @default.
- W3136321522 hasConcept C154945302 @default.
- W3136321522 hasConcept C162118730 @default.
- W3136321522 hasConcept C169258074 @default.
- W3136321522 hasConcept C178350159 @default.
- W3136321522 hasConcept C2908647359 @default.
- W3136321522 hasConcept C41008148 @default.
- W3136321522 hasConcept C71924100 @default.
- W3136321522 hasConcept C84525736 @default.
- W3136321522 hasConcept C99454951 @default.
- W3136321522 hasConceptScore W3136321522C119857082 @default.
- W3136321522 hasConceptScore W3136321522C12267149 @default.
- W3136321522 hasConceptScore W3136321522C144133560 @default.
- W3136321522 hasConceptScore W3136321522C151956035 @default.
- W3136321522 hasConceptScore W3136321522C154945302 @default.
- W3136321522 hasConceptScore W3136321522C162118730 @default.
- W3136321522 hasConceptScore W3136321522C169258074 @default.
- W3136321522 hasConceptScore W3136321522C178350159 @default.
- W3136321522 hasConceptScore W3136321522C2908647359 @default.
- W3136321522 hasConceptScore W3136321522C41008148 @default.
- W3136321522 hasConceptScore W3136321522C71924100 @default.
- W3136321522 hasConceptScore W3136321522C84525736 @default.
- W3136321522 hasConceptScore W3136321522C99454951 @default.
- W3136321522 hasIssue "3" @default.
- W3136321522 hasLocation W31363215221 @default.
- W3136321522 hasLocation W31363215222 @default.
- W3136321522 hasOpenAccess W3136321522 @default.
- W3136321522 hasPrimaryLocation W31363215221 @default.
- W3136321522 hasRelatedWork W3195168932 @default.
- W3136321522 hasRelatedWork W4212963941 @default.
- W3136321522 hasRelatedWork W4239706975 @default.
- W3136321522 hasRelatedWork W4283313480 @default.
- W3136321522 hasRelatedWork W4285312668 @default.
- W3136321522 hasRelatedWork W4321636153 @default.
- W3136321522 hasRelatedWork W4367335893 @default.
- W3136321522 hasRelatedWork W4377964522 @default.
- W3136321522 hasRelatedWork W4383535405 @default.
- W3136321522 hasRelatedWork W4384520063 @default.
- W3136321522 hasVolume "14" @default.
- W3136321522 isParatext "false" @default.
- W3136321522 isRetracted "false" @default.
- W3136321522 magId "3136321522" @default.
- W3136321522 workType "article" @default.