Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136321992> ?p ?o ?g. }
- W3136321992 endingPage "121199" @default.
- W3136321992 startingPage "121199" @default.
- W3136321992 abstract "• Convolutional neural networks (CNNs) are trained to predict effective thermal properties of composite phase change materials. • Finite element simulations are used to prepare the dataset for CNN training. • Heat generations during a battery operation are simulated. • CNN can accurately evaluate a battery pack's thermal management system. In this work, we develop a combined convolutional neural networks (CNNs) and finite element method (FEM) to examine the effective thermal properties of composite phase change materials (CPCMs) consisting of paraffin and copper foam. In this approach, first the CPCM microstructures are modeled using FEM and next the image dataset with corresponding thermal properties is created. The image dataset is subsequently used to train and test the CNN's performance, which is then compared with the performance of a popular network architecture for image classification tasks. The predicted thermal properties are employed to define the properties of the CPCM material of a battery pack. The heat generation and electrochemical response of a Li-ion cell during the charging/discharging is simulated by developing Newman's battery model. Thermal management is achieved by the latent heat of paraffin, with copper foam for enhancing the thermal conductivity. The multiscale model is finally developed using FEM to investigate the effectiveness of the thermal management of the battery pack. In these models the thermal properties estimated by the FEM and the CNN are employed to define the CPCM materials properties of a battery pack. Our results confirm that the model developed on the basis of a CNN can evaluate the effectiveness of the battery pack's thermal management system with an excellent accuracy in comparison with the original FEM models." @default.
- W3136321992 created "2021-03-29" @default.
- W3136321992 creator A5003339497 @default.
- W3136321992 creator A5027418869 @default.
- W3136321992 creator A5065190539 @default.
- W3136321992 creator A5090972958 @default.
- W3136321992 date "2021-06-01" @default.
- W3136321992 modified "2023-10-13" @default.
- W3136321992 title "Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries’ thermal management" @default.
- W3136321992 cites W1427866217 @default.
- W3136321992 cites W1572952380 @default.
- W3136321992 cites W1967005434 @default.
- W3136321992 cites W1968577089 @default.
- W3136321992 cites W1975412981 @default.
- W3136321992 cites W1975728770 @default.
- W3136321992 cites W1981388442 @default.
- W3136321992 cites W1985807902 @default.
- W3136321992 cites W1993778776 @default.
- W3136321992 cites W2005817901 @default.
- W3136321992 cites W2013052626 @default.
- W3136321992 cites W2013864440 @default.
- W3136321992 cites W2013890830 @default.
- W3136321992 cites W2023707004 @default.
- W3136321992 cites W2031725528 @default.
- W3136321992 cites W2045460971 @default.
- W3136321992 cites W2050251409 @default.
- W3136321992 cites W2051349350 @default.
- W3136321992 cites W2054745385 @default.
- W3136321992 cites W2057598630 @default.
- W3136321992 cites W2064982060 @default.
- W3136321992 cites W2069625867 @default.
- W3136321992 cites W2082437601 @default.
- W3136321992 cites W2088491799 @default.
- W3136321992 cites W2093488049 @default.
- W3136321992 cites W2095561340 @default.
- W3136321992 cites W2097171118 @default.
- W3136321992 cites W2109385534 @default.
- W3136321992 cites W2115588528 @default.
- W3136321992 cites W2129466170 @default.
- W3136321992 cites W2169518199 @default.
- W3136321992 cites W2398847288 @default.
- W3136321992 cites W2404710707 @default.
- W3136321992 cites W2620737278 @default.
- W3136321992 cites W2737671859 @default.
- W3136321992 cites W2766966300 @default.
- W3136321992 cites W2780445906 @default.
- W3136321992 cites W2964763564 @default.
- W3136321992 cites W3006105710 @default.
- W3136321992 cites W3105608515 @default.
- W3136321992 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199" @default.
- W3136321992 hasPublicationYear "2021" @default.
- W3136321992 type Work @default.
- W3136321992 sameAs 3136321992 @default.
- W3136321992 citedByCount "37" @default.
- W3136321992 countsByYear W31363219922021 @default.
- W3136321992 countsByYear W31363219922022 @default.
- W3136321992 countsByYear W31363219922023 @default.
- W3136321992 crossrefType "journal-article" @default.
- W3136321992 hasAuthorship W3136321992A5003339497 @default.
- W3136321992 hasAuthorship W3136321992A5027418869 @default.
- W3136321992 hasAuthorship W3136321992A5065190539 @default.
- W3136321992 hasAuthorship W3136321992A5090972958 @default.
- W3136321992 hasBestOaLocation W31363219922 @default.
- W3136321992 hasConcept C104779481 @default.
- W3136321992 hasConcept C121332964 @default.
- W3136321992 hasConcept C127413603 @default.
- W3136321992 hasConcept C135628077 @default.
- W3136321992 hasConcept C154945302 @default.
- W3136321992 hasConcept C159985019 @default.
- W3136321992 hasConcept C163258240 @default.
- W3136321992 hasConcept C192562407 @default.
- W3136321992 hasConcept C204530211 @default.
- W3136321992 hasConcept C2778119658 @default.
- W3136321992 hasConcept C2778508592 @default.
- W3136321992 hasConcept C41008148 @default.
- W3136321992 hasConcept C555008776 @default.
- W3136321992 hasConcept C58024561 @default.
- W3136321992 hasConcept C66938386 @default.
- W3136321992 hasConcept C81363708 @default.
- W3136321992 hasConcept C97346530 @default.
- W3136321992 hasConcept C97355855 @default.
- W3136321992 hasConceptScore W3136321992C104779481 @default.
- W3136321992 hasConceptScore W3136321992C121332964 @default.
- W3136321992 hasConceptScore W3136321992C127413603 @default.
- W3136321992 hasConceptScore W3136321992C135628077 @default.
- W3136321992 hasConceptScore W3136321992C154945302 @default.
- W3136321992 hasConceptScore W3136321992C159985019 @default.
- W3136321992 hasConceptScore W3136321992C163258240 @default.
- W3136321992 hasConceptScore W3136321992C192562407 @default.
- W3136321992 hasConceptScore W3136321992C204530211 @default.
- W3136321992 hasConceptScore W3136321992C2778119658 @default.
- W3136321992 hasConceptScore W3136321992C2778508592 @default.
- W3136321992 hasConceptScore W3136321992C41008148 @default.
- W3136321992 hasConceptScore W3136321992C555008776 @default.
- W3136321992 hasConceptScore W3136321992C58024561 @default.
- W3136321992 hasConceptScore W3136321992C66938386 @default.
- W3136321992 hasConceptScore W3136321992C81363708 @default.
- W3136321992 hasConceptScore W3136321992C97346530 @default.