Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136334766> ?p ?o ?g. }
- W3136334766 endingPage "340" @default.
- W3136334766 startingPage "340" @default.
- W3136334766 abstract "Offline Arabic Handwriting Recognition (OAHR) has recently become instrumental in the areas of pattern recognition and image processing due to its application in several fields, such as office automation and document processing. However, OAHR continues to face several challenges, including high variability of the Arabic script and its intrinsic characteristics such as cursiveness, ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public databases. In this paper, we introduce a novel context-aware model based on deep neural networks to address the challenges of recognizing offline handwritten Arabic text, including isolated digits, characters, and words. Specifically, we propose a supervised Convolutional Neural Network (CNN) model that contextually extracts optimal features and employs batch normalization and dropout regularization parameters. This aims to prevent overfitting and further enhance generalization performance when compared to conventional deep learning models. We employ a number of deep stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The model is extensively evaluated and shown to demonstrate excellent classification accuracy when compared to conventional OAHR approaches on a diverse set of six benchmark databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT (Digits), SUST-ALT (Characters), and SUST-ALT (Names). A further experimental study is conducted on the benchmark Arabic databases by exploiting transfer learning (TL)-based feature extraction which demonstrates the superiority of our proposed model in relation to state-of-the-art VGGNet-19 and MobileNet pre-trained models. Finally, experiments are conducted to assess comparative generalization capabilities of the models using another language database , specifically the benchmark MNIST English isolated Digits database, which further confirm the superiority of our proposed DCNN model." @default.
- W3136334766 created "2021-03-29" @default.
- W3136334766 creator A5019898978 @default.
- W3136334766 creator A5038150152 @default.
- W3136334766 creator A5051661635 @default.
- W3136334766 creator A5058869522 @default.
- W3136334766 creator A5062211930 @default.
- W3136334766 creator A5065762130 @default.
- W3136334766 creator A5068981769 @default.
- W3136334766 creator A5080408255 @default.
- W3136334766 date "2021-03-13" @default.
- W3136334766 modified "2023-10-01" @default.
- W3136334766 title "Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts" @default.
- W3136334766 cites W1997549523 @default.
- W3136334766 cites W2050828411 @default.
- W3136334766 cites W2171927392 @default.
- W3136334766 cites W2198918026 @default.
- W3136334766 cites W2246729996 @default.
- W3136334766 cites W2330219538 @default.
- W3136334766 cites W2340338254 @default.
- W3136334766 cites W2395579298 @default.
- W3136334766 cites W2467325985 @default.
- W3136334766 cites W2492922441 @default.
- W3136334766 cites W2618353736 @default.
- W3136334766 cites W2725654677 @default.
- W3136334766 cites W2765369538 @default.
- W3136334766 cites W2768956845 @default.
- W3136334766 cites W2770119645 @default.
- W3136334766 cites W2776881402 @default.
- W3136334766 cites W2791869553 @default.
- W3136334766 cites W2888868298 @default.
- W3136334766 cites W2903472348 @default.
- W3136334766 cites W2912227124 @default.
- W3136334766 cites W2915137056 @default.
- W3136334766 cites W2943160821 @default.
- W3136334766 cites W2953308748 @default.
- W3136334766 cites W2959334635 @default.
- W3136334766 cites W2971630540 @default.
- W3136334766 cites W2980718707 @default.
- W3136334766 cites W2997471800 @default.
- W3136334766 cites W3005444521 @default.
- W3136334766 cites W3017078175 @default.
- W3136334766 cites W3020804303 @default.
- W3136334766 cites W3030957396 @default.
- W3136334766 cites W3032903209 @default.
- W3136334766 cites W3089448853 @default.
- W3136334766 cites W3094706461 @default.
- W3136334766 cites W3110679209 @default.
- W3136334766 cites W3128585438 @default.
- W3136334766 doi "https://doi.org/10.3390/e23030340" @default.
- W3136334766 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8001675" @default.
- W3136334766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33805765" @default.
- W3136334766 hasPublicationYear "2021" @default.
- W3136334766 type Work @default.
- W3136334766 sameAs 3136334766 @default.
- W3136334766 citedByCount "32" @default.
- W3136334766 countsByYear W31363347662021 @default.
- W3136334766 countsByYear W31363347662022 @default.
- W3136334766 countsByYear W31363347662023 @default.
- W3136334766 crossrefType "journal-article" @default.
- W3136334766 hasAuthorship W3136334766A5019898978 @default.
- W3136334766 hasAuthorship W3136334766A5038150152 @default.
- W3136334766 hasAuthorship W3136334766A5051661635 @default.
- W3136334766 hasAuthorship W3136334766A5058869522 @default.
- W3136334766 hasAuthorship W3136334766A5062211930 @default.
- W3136334766 hasAuthorship W3136334766A5065762130 @default.
- W3136334766 hasAuthorship W3136334766A5068981769 @default.
- W3136334766 hasAuthorship W3136334766A5080408255 @default.
- W3136334766 hasBestOaLocation W31363347661 @default.
- W3136334766 hasConcept C108583219 @default.
- W3136334766 hasConcept C119857082 @default.
- W3136334766 hasConcept C13280743 @default.
- W3136334766 hasConcept C136886441 @default.
- W3136334766 hasConcept C144024400 @default.
- W3136334766 hasConcept C153180895 @default.
- W3136334766 hasConcept C154945302 @default.
- W3136334766 hasConcept C185798385 @default.
- W3136334766 hasConcept C19165224 @default.
- W3136334766 hasConcept C204321447 @default.
- W3136334766 hasConcept C205649164 @default.
- W3136334766 hasConcept C22019652 @default.
- W3136334766 hasConcept C2776145597 @default.
- W3136334766 hasConcept C28490314 @default.
- W3136334766 hasConcept C41008148 @default.
- W3136334766 hasConcept C50644808 @default.
- W3136334766 hasConcept C52622490 @default.
- W3136334766 hasConcept C81363708 @default.
- W3136334766 hasConceptScore W3136334766C108583219 @default.
- W3136334766 hasConceptScore W3136334766C119857082 @default.
- W3136334766 hasConceptScore W3136334766C13280743 @default.
- W3136334766 hasConceptScore W3136334766C136886441 @default.
- W3136334766 hasConceptScore W3136334766C144024400 @default.
- W3136334766 hasConceptScore W3136334766C153180895 @default.
- W3136334766 hasConceptScore W3136334766C154945302 @default.
- W3136334766 hasConceptScore W3136334766C185798385 @default.
- W3136334766 hasConceptScore W3136334766C19165224 @default.
- W3136334766 hasConceptScore W3136334766C204321447 @default.
- W3136334766 hasConceptScore W3136334766C205649164 @default.