Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136338957> ?p ?o ?g. }
- W3136338957 abstract "Nonlinear optical properties of organic chromophores are of great interest in diverse photonic and optoelectronic applications. To elucidate general trends in the behaviors of molecules, large amounts of data are required. Therefore, both an accurate and a rapid computational approach can significantly promote the theoretical design of molecules. In this work, we combined quantum chemistry and machine learning (ML) to study the first hyperpolarizability (β) in [2.2]paracyclophane-containing push–pull compounds with various terminal donor/acceptor pairs and molecular lengths. To generate reference β values for ML, the ab initio elongation finite-field method was used, allowing us to treat long polymer chains with linear scale efficiency and high computational accuracy. A neural network (NN) model was built for β prediction, and the relevant molecular descriptors were selected using a genetic algorithm. The established NN model accurately reproduced the β values (R2 > 0.99) of long molecules based on the input quantum chemical properties (dipole moment, frontier molecular orbitals, etc.) of only the shortest systems and additional information about the actual system length. To obtain general trends in molecular descriptor–target property relationships learned by the NN, three approaches for explaining the ML decisions (i.e., partial dependence, accumulated local effects, and permutation feature importance) were used. The effect of donor/acceptor alternation on β in the studied systems was examined. The asymmetric extension of molecular regions end-capped with donors and acceptors produced unequal β responses. The results revealed how the electronic properties originating from the nature of substituents on the microscale controlled the magnitude of β according to the NN approximation. The applied approach facilitates the conceptual discoveries in chemistry by using ML to both (i) efficiently generate data and (ii) provide a source of information about causal correlations among system properties." @default.
- W3136338957 created "2021-03-29" @default.
- W3136338957 creator A5005645938 @default.
- W3136338957 creator A5030061848 @default.
- W3136338957 creator A5055040076 @default.
- W3136338957 date "2021-03-23" @default.
- W3136338957 modified "2023-10-15" @default.
- W3136338957 title "Quantum chemistry–machine learning approach for predicting and elucidating molecular hyperpolarizability: Application to [2.2]paracyclophane-containing push–pull polymers" @default.
- W3136338957 cites W1678356000 @default.
- W3136338957 cites W1906950036 @default.
- W3136338957 cites W1958109192 @default.
- W3136338957 cites W1971599238 @default.
- W3136338957 cites W1971974219 @default.
- W3136338957 cites W1972252302 @default.
- W3136338957 cites W1980700313 @default.
- W3136338957 cites W1981546475 @default.
- W3136338957 cites W1982125845 @default.
- W3136338957 cites W2008423326 @default.
- W3136338957 cites W2012743013 @default.
- W3136338957 cites W2013598917 @default.
- W3136338957 cites W2021122837 @default.
- W3136338957 cites W2022950330 @default.
- W3136338957 cites W2023705221 @default.
- W3136338957 cites W2024355976 @default.
- W3136338957 cites W2026675690 @default.
- W3136338957 cites W2035887397 @default.
- W3136338957 cites W2039066735 @default.
- W3136338957 cites W2041794913 @default.
- W3136338957 cites W2043415692 @default.
- W3136338957 cites W2044599397 @default.
- W3136338957 cites W2047094503 @default.
- W3136338957 cites W2060608642 @default.
- W3136338957 cites W2072405411 @default.
- W3136338957 cites W2078240796 @default.
- W3136338957 cites W2089438911 @default.
- W3136338957 cites W2089468765 @default.
- W3136338957 cites W2091085232 @default.
- W3136338957 cites W2119479037 @default.
- W3136338957 cites W2144477733 @default.
- W3136338957 cites W2150697053 @default.
- W3136338957 cites W2169796557 @default.
- W3136338957 cites W2314783118 @default.
- W3136338957 cites W2418052243 @default.
- W3136338957 cites W2466352825 @default.
- W3136338957 cites W2586815198 @default.
- W3136338957 cites W2607969669 @default.
- W3136338957 cites W2740564502 @default.
- W3136338957 cites W3010220451 @default.
- W3136338957 cites W3035517615 @default.
- W3136338957 cites W3043600366 @default.
- W3136338957 doi "https://doi.org/10.1063/5.0040342" @default.
- W3136338957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33810676" @default.
- W3136338957 hasPublicationYear "2021" @default.
- W3136338957 type Work @default.
- W3136338957 sameAs 3136338957 @default.
- W3136338957 citedByCount "3" @default.
- W3136338957 countsByYear W31363389572021 @default.
- W3136338957 countsByYear W31363389572022 @default.
- W3136338957 crossrefType "journal-article" @default.
- W3136338957 hasAuthorship W3136338957A5005645938 @default.
- W3136338957 hasAuthorship W3136338957A5030061848 @default.
- W3136338957 hasAuthorship W3136338957A5055040076 @default.
- W3136338957 hasConcept C121332964 @default.
- W3136338957 hasConcept C139287275 @default.
- W3136338957 hasConcept C139358910 @default.
- W3136338957 hasConcept C147597530 @default.
- W3136338957 hasConcept C159467904 @default.
- W3136338957 hasConcept C173523689 @default.
- W3136338957 hasConcept C178790620 @default.
- W3136338957 hasConcept C185592680 @default.
- W3136338957 hasConcept C192468462 @default.
- W3136338957 hasConcept C192562407 @default.
- W3136338957 hasConcept C22994065 @default.
- W3136338957 hasConcept C2779892579 @default.
- W3136338957 hasConcept C2780694488 @default.
- W3136338957 hasConcept C2781442258 @default.
- W3136338957 hasConcept C32909587 @default.
- W3136338957 hasConcept C41008148 @default.
- W3136338957 hasConcept C62520636 @default.
- W3136338957 hasConcept C84114770 @default.
- W3136338957 hasConcept C93275456 @default.
- W3136338957 hasConceptScore W3136338957C121332964 @default.
- W3136338957 hasConceptScore W3136338957C139287275 @default.
- W3136338957 hasConceptScore W3136338957C139358910 @default.
- W3136338957 hasConceptScore W3136338957C147597530 @default.
- W3136338957 hasConceptScore W3136338957C159467904 @default.
- W3136338957 hasConceptScore W3136338957C173523689 @default.
- W3136338957 hasConceptScore W3136338957C178790620 @default.
- W3136338957 hasConceptScore W3136338957C185592680 @default.
- W3136338957 hasConceptScore W3136338957C192468462 @default.
- W3136338957 hasConceptScore W3136338957C192562407 @default.
- W3136338957 hasConceptScore W3136338957C22994065 @default.
- W3136338957 hasConceptScore W3136338957C2779892579 @default.
- W3136338957 hasConceptScore W3136338957C2780694488 @default.
- W3136338957 hasConceptScore W3136338957C2781442258 @default.
- W3136338957 hasConceptScore W3136338957C32909587 @default.
- W3136338957 hasConceptScore W3136338957C41008148 @default.
- W3136338957 hasConceptScore W3136338957C62520636 @default.
- W3136338957 hasConceptScore W3136338957C84114770 @default.
- W3136338957 hasConceptScore W3136338957C93275456 @default.