Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136349451> ?p ?o ?g. }
- W3136349451 endingPage "803" @default.
- W3136349451 startingPage "803" @default.
- W3136349451 abstract "Genomic selection uses genetic marker information to predict genomic breeding values (gEBVs), and can be a suitable tool for selecting low-hereditability traits such as litter size in rabbits. However, genotyping costs in rabbits are still too high to enable genomic prediction in selective breeding programs. One method for decreasing genotyping costs is the genotype imputation, where parents are genotyped at high SNP-density (HD) and the progeny are genotyped at lower SNP-density, followed by imputation to HD. The aim of this study was to disentangle the best imputation strategies with a trade-off between genotyping costs and the accuracy of breeding values for litter size. A selection process, mimicking a commercial breeding rabbit selection program for litter size, was simulated. Two different Quantitative Trait Nucleotide (QTN) models (QTN_5 and QTN_44) were generated 36 times each. From these simulations, seven different scenarios (S1–S7) and a further replicate of the third scenario (S3_A) were created. Scenarios consist of a different combination of genotyping strategies. In these scenarios, ancestors and progeny were genotyped with a mix of three different platforms, containing 200,000, 60,000, and 600 SNPs under a cost of EUR 100, 50 and 11 per animal, respectively. Imputation accuracy (IA) was measured as a Pearson’s correlation between true genotype and imputed genotype, whilst the accuracy of gEBVs was the correlation between true breeding value and the estimated one. The relationships between IA, the accuracy of gEBVs, genotyping costs, and response to selection were examined under each QTN model. QTN_44 presented better performance, according to the results of genomic prediction, but the same ranks between scenarios remained in both QTN models. The highest IA (0.99) and the accuracy of gEBVs (0.26; QTN_44, and 0.228; QTN_5) were observed in S1 where all ancestors were genotyped at HD and progeny at medium SNP-density (MD). Nevertheless, this was the most expensive scenario compared to the others in which the progenies were genotyped at low SNP-density (LD). Scenarios with low average costs presented low IA, particularly when female ancestors were genotyped at LD (S5) or non-genotyped (S7). The S3_A, imputing whole-genomes, had the lowest accuracy of gEBVs (0.09), even worse than Best Linear Unbiased Prediction (BLUP). The best trade-off between genotyping costs and the accuracy of gEBVs (0.234; QTN_44 and 0.199) was in S6, in which dams were genotyped with MD whilst grand-dams were non-genotyped. However, this relationship would depend mainly on the distribution of QTN and SNP across the genome, suggesting further studies on the characterization of the rabbit genome in the Spanish lines. In summary, genomic selection with genotype imputation is feasible in the rabbit industry, considering only genotyping strategies with suitable IA, accuracy of gEBVs, genotyping costs, and response to selection." @default.
- W3136349451 created "2021-03-29" @default.
- W3136349451 creator A5017256944 @default.
- W3136349451 creator A5073639920 @default.
- W3136349451 creator A5083674293 @default.
- W3136349451 creator A5090952609 @default.
- W3136349451 date "2021-03-13" @default.
- W3136349451 modified "2023-10-13" @default.
- W3136349451 title "Genotype Imputation to Improve the Cost-Efficiency of Genomic Selection in Rabbits" @default.
- W3136349451 cites W1599031386 @default.
- W3136349451 cites W1781366361 @default.
- W3136349451 cites W1850421820 @default.
- W3136349451 cites W1969673534 @default.
- W3136349451 cites W1973196863 @default.
- W3136349451 cites W1999398820 @default.
- W3136349451 cites W2008014772 @default.
- W3136349451 cites W2012378145 @default.
- W3136349451 cites W2026225449 @default.
- W3136349451 cites W2035380418 @default.
- W3136349451 cites W2067715889 @default.
- W3136349451 cites W2071430437 @default.
- W3136349451 cites W2073857359 @default.
- W3136349451 cites W2084594350 @default.
- W3136349451 cites W2090447057 @default.
- W3136349451 cites W2115306230 @default.
- W3136349451 cites W2116797702 @default.
- W3136349451 cites W2121424562 @default.
- W3136349451 cites W2132108517 @default.
- W3136349451 cites W2135734970 @default.
- W3136349451 cites W2142220815 @default.
- W3136349451 cites W2149594592 @default.
- W3136349451 cites W2157164297 @default.
- W3136349451 cites W2158882552 @default.
- W3136349451 cites W2161831898 @default.
- W3136349451 cites W2164050502 @default.
- W3136349451 cites W2165141658 @default.
- W3136349451 cites W2166178841 @default.
- W3136349451 cites W2262563594 @default.
- W3136349451 cites W2262801583 @default.
- W3136349451 cites W2288354838 @default.
- W3136349451 cites W2399799412 @default.
- W3136349451 cites W2405543847 @default.
- W3136349451 cites W2511378584 @default.
- W3136349451 cites W2521275485 @default.
- W3136349451 cites W2564551776 @default.
- W3136349451 cites W2590121248 @default.
- W3136349451 cites W2593513855 @default.
- W3136349451 cites W2594085260 @default.
- W3136349451 cites W2729424006 @default.
- W3136349451 cites W2736745869 @default.
- W3136349451 cites W2770840994 @default.
- W3136349451 cites W2799467107 @default.
- W3136349451 cites W2802671930 @default.
- W3136349451 cites W2908512168 @default.
- W3136349451 cites W2911745936 @default.
- W3136349451 cites W2915301594 @default.
- W3136349451 cites W2972616192 @default.
- W3136349451 cites W2981346658 @default.
- W3136349451 cites W3003822409 @default.
- W3136349451 cites W3006695700 @default.
- W3136349451 cites W3087715319 @default.
- W3136349451 cites W4240204556 @default.
- W3136349451 doi "https://doi.org/10.3390/ani11030803" @default.
- W3136349451 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8000098" @default.
- W3136349451 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33805619" @default.
- W3136349451 hasPublicationYear "2021" @default.
- W3136349451 type Work @default.
- W3136349451 sameAs 3136349451 @default.
- W3136349451 citedByCount "6" @default.
- W3136349451 countsByYear W31363494512021 @default.
- W3136349451 countsByYear W31363494512022 @default.
- W3136349451 countsByYear W31363494512023 @default.
- W3136349451 crossrefType "journal-article" @default.
- W3136349451 hasAuthorship W3136349451A5017256944 @default.
- W3136349451 hasAuthorship W3136349451A5073639920 @default.
- W3136349451 hasAuthorship W3136349451A5083674293 @default.
- W3136349451 hasAuthorship W3136349451A5090952609 @default.
- W3136349451 hasBestOaLocation W31363494511 @default.
- W3136349451 hasConcept C104317684 @default.
- W3136349451 hasConcept C105795698 @default.
- W3136349451 hasConcept C106934330 @default.
- W3136349451 hasConcept C119857082 @default.
- W3136349451 hasConcept C135763542 @default.
- W3136349451 hasConcept C153209595 @default.
- W3136349451 hasConcept C199360897 @default.
- W3136349451 hasConcept C2992444039 @default.
- W3136349451 hasConcept C31467283 @default.
- W3136349451 hasConcept C33923547 @default.
- W3136349451 hasConcept C41008148 @default.
- W3136349451 hasConcept C54355233 @default.
- W3136349451 hasConcept C58041806 @default.
- W3136349451 hasConcept C81917197 @default.
- W3136349451 hasConcept C81941488 @default.
- W3136349451 hasConcept C86803240 @default.
- W3136349451 hasConcept C9357733 @default.
- W3136349451 hasConceptScore W3136349451C104317684 @default.
- W3136349451 hasConceptScore W3136349451C105795698 @default.
- W3136349451 hasConceptScore W3136349451C106934330 @default.