Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136350169> ?p ?o ?g. }
- W3136350169 endingPage "6083" @default.
- W3136350169 startingPage "6066" @default.
- W3136350169 abstract "The explosion in the volumes of data being stored online has resulted in distributed storage `s transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. These codes can correct a small number of erasures (which is the typical case) by accessing only a small number of remaining coordinates. An (n, r, h, a, q)-LRC is a linear code over F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>q</sub> of length n, whose codeword symbols are partitioned into g = n/r local groups each of size r. Each local group has a local parity checks that allow recovery of up to a erasures within the group by reading the unerased symbols in the group. There are a further h “heavy” parity checks to provide fault tolerance from more global erasure patterns. Such an LRC is Maximally Recoverable (MR), if it corrects all erasure patterns which are information-theoretically correctable under the stipulated structure of local and global parity checks, namely patterns with up to a erasures in each local group and an additional h (or fewer) erasures anywhere in the codeword. The existing constructions require fields of size n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ω(h)</sup> while no superlinear lower bounds were known for any setting of parameters. Is it possible to get linear field size similar to the related MDS codes (e.g., Reed-Solomon codes)? In this work, we answer this question by showing superlinear lower bounds on the field size of MR-LRCs. When a,h are constant and the number of local groups g ≥ h, while r may grow with n, our lower bound simplifies to q ≥ Ω <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a,h</sub> (n · r <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>min{a,</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>h-2}</sup> ) . MR-LRCs deployed in practice have a small number of global parities, typically h = 2, 3 . We complement our lower bounds by giving constructions with small field size for h ≤ 3. When h = 2, we give a linear field size construction, whereas previous constructions required quadratic field size in some parameter ranges. Note that our lower bound is superlinear only if h ≥ 3. When h = 3, we give a construction with O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> ) field size, whereas previous constructions needed n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Θ(a)</sup> field size. This makes the choices r = 3, a = 1, h = 3 the next simplest non-trivial setting to investigate regarding the existence of MR-LRCs over fields of near-linear size. We answer this question in the positive via a novel approach based on elliptic curves and arithmetic progression free sets." @default.
- W3136350169 created "2021-03-29" @default.
- W3136350169 creator A5038687630 @default.
- W3136350169 creator A5046685409 @default.
- W3136350169 creator A5068388812 @default.
- W3136350169 date "2020-10-01" @default.
- W3136350169 modified "2023-09-27" @default.
- W3136350169 title "Maximally Recoverable LRCs: A Field Size Lower Bound and Constructions for Few Heavy Parities" @default.
- W3136350169 cites W1471103927 @default.
- W3136350169 cites W1968528796 @default.
- W3136350169 cites W1993830711 @default.
- W3136350169 cites W1997044393 @default.
- W3136350169 cites W2010024611 @default.
- W3136350169 cites W2022619326 @default.
- W3136350169 cites W2023600080 @default.
- W3136350169 cites W2041788275 @default.
- W3136350169 cites W2050687505 @default.
- W3136350169 cites W2060646539 @default.
- W3136350169 cites W2086258276 @default.
- W3136350169 cites W2099837838 @default.
- W3136350169 cites W2105185344 @default.
- W3136350169 cites W2124961791 @default.
- W3136350169 cites W2138744797 @default.
- W3136350169 cites W2242452602 @default.
- W3136350169 cites W2291936214 @default.
- W3136350169 cites W2313391498 @default.
- W3136350169 cites W2333324284 @default.
- W3136350169 cites W2339524574 @default.
- W3136350169 cites W2555108336 @default.
- W3136350169 cites W2611420662 @default.
- W3136350169 cites W2744311935 @default.
- W3136350169 cites W2956089011 @default.
- W3136350169 cites W2963072024 @default.
- W3136350169 cites W2963439874 @default.
- W3136350169 cites W2963754880 @default.
- W3136350169 cites W2963779977 @default.
- W3136350169 cites W2964326991 @default.
- W3136350169 cites W3105325455 @default.
- W3136350169 cites W3138287827 @default.
- W3136350169 cites W4292027090 @default.
- W3136350169 doi "https://doi.org/10.1109/tit.2020.2990981" @default.
- W3136350169 hasPublicationYear "2020" @default.
- W3136350169 type Work @default.
- W3136350169 sameAs 3136350169 @default.
- W3136350169 citedByCount "29" @default.
- W3136350169 countsByYear W31363501692019 @default.
- W3136350169 countsByYear W31363501692020 @default.
- W3136350169 countsByYear W31363501692021 @default.
- W3136350169 countsByYear W31363501692022 @default.
- W3136350169 countsByYear W31363501692023 @default.
- W3136350169 crossrefType "journal-article" @default.
- W3136350169 hasAuthorship W3136350169A5038687630 @default.
- W3136350169 hasAuthorship W3136350169A5046685409 @default.
- W3136350169 hasAuthorship W3136350169A5068388812 @default.
- W3136350169 hasBestOaLocation W31363501691 @default.
- W3136350169 hasConcept C104293457 @default.
- W3136350169 hasConcept C105795698 @default.
- W3136350169 hasConcept C109214941 @default.
- W3136350169 hasConcept C11413529 @default.
- W3136350169 hasConcept C114614502 @default.
- W3136350169 hasConcept C118615104 @default.
- W3136350169 hasConcept C120665830 @default.
- W3136350169 hasConcept C121332964 @default.
- W3136350169 hasConcept C134306372 @default.
- W3136350169 hasConcept C137529215 @default.
- W3136350169 hasConcept C153207627 @default.
- W3136350169 hasConcept C177264268 @default.
- W3136350169 hasConcept C179518139 @default.
- W3136350169 hasConcept C199360897 @default.
- W3136350169 hasConcept C2776760102 @default.
- W3136350169 hasConcept C2777151079 @default.
- W3136350169 hasConcept C2778790127 @default.
- W3136350169 hasConcept C3019527723 @default.
- W3136350169 hasConcept C33923547 @default.
- W3136350169 hasConcept C41008148 @default.
- W3136350169 hasConcept C57273362 @default.
- W3136350169 hasConcept C77553402 @default.
- W3136350169 hasConcept C77926391 @default.
- W3136350169 hasConceptScore W3136350169C104293457 @default.
- W3136350169 hasConceptScore W3136350169C105795698 @default.
- W3136350169 hasConceptScore W3136350169C109214941 @default.
- W3136350169 hasConceptScore W3136350169C11413529 @default.
- W3136350169 hasConceptScore W3136350169C114614502 @default.
- W3136350169 hasConceptScore W3136350169C118615104 @default.
- W3136350169 hasConceptScore W3136350169C120665830 @default.
- W3136350169 hasConceptScore W3136350169C121332964 @default.
- W3136350169 hasConceptScore W3136350169C134306372 @default.
- W3136350169 hasConceptScore W3136350169C137529215 @default.
- W3136350169 hasConceptScore W3136350169C153207627 @default.
- W3136350169 hasConceptScore W3136350169C177264268 @default.
- W3136350169 hasConceptScore W3136350169C179518139 @default.
- W3136350169 hasConceptScore W3136350169C199360897 @default.
- W3136350169 hasConceptScore W3136350169C2776760102 @default.
- W3136350169 hasConceptScore W3136350169C2777151079 @default.
- W3136350169 hasConceptScore W3136350169C2778790127 @default.
- W3136350169 hasConceptScore W3136350169C3019527723 @default.
- W3136350169 hasConceptScore W3136350169C33923547 @default.
- W3136350169 hasConceptScore W3136350169C41008148 @default.