Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136354046> ?p ?o ?g. }
- W3136354046 abstract "We show that the cross section for diffractive dissociation of a small onium off a large nucleus at total rapidity $Y$ and requiring a minimum rapidity gap $Y_{text{gap}}$ can be identified, in a well-defined parametric limit, with a simple classical observable on the stochastic process representing the evolution of the state of the onium, as its rapidity increases, in the form of color dipole branchings: It formally coincides with twice the probability that an even number of these dipoles effectively participate in the scattering, when viewed in a frame in which the onium is evolved to the rapidity $Y-Y_{text{gap}}$. Consequently, finding asymptotic solutions to the Kovchegov-Levin equation, which rules the $Y$-dependence of the diffractive cross section, boils down to solving a probabilistic problem. Such a formulation authorizes the derivation of a parameter-free analytical expression for the gap distribution. Interestingly enough, events in which many dipoles interact simultaneously play an important role, since the distribution of the number $k$ of dipoles participating in the interaction turns out to be proportional to $1/[k(k-1)]$." @default.
- W3136354046 created "2021-03-29" @default.
- W3136354046 creator A5031362015 @default.
- W3136354046 creator A5042818141 @default.
- W3136354046 creator A5070556975 @default.
- W3136354046 date "2021-08-26" @default.
- W3136354046 modified "2023-09-25" @default.
- W3136354046 title "Analytical asymptotics for hard diffraction" @default.
- W3136354046 cites W1531120821 @default.
- W3136354046 cites W1674491907 @default.
- W3136354046 cites W1796954972 @default.
- W3136354046 cites W1967184564 @default.
- W3136354046 cites W1991759480 @default.
- W3136354046 cites W1997378317 @default.
- W3136354046 cites W1998047999 @default.
- W3136354046 cites W2003890812 @default.
- W3136354046 cites W2004649987 @default.
- W3136354046 cites W2023609273 @default.
- W3136354046 cites W2040609053 @default.
- W3136354046 cites W2059873266 @default.
- W3136354046 cites W2063404061 @default.
- W3136354046 cites W2070651187 @default.
- W3136354046 cites W2075284917 @default.
- W3136354046 cites W2079949023 @default.
- W3136354046 cites W2080760761 @default.
- W3136354046 cites W2085416299 @default.
- W3136354046 cites W2086687218 @default.
- W3136354046 cites W2088152329 @default.
- W3136354046 cites W2094244510 @default.
- W3136354046 cites W2096283454 @default.
- W3136354046 cites W2105359653 @default.
- W3136354046 cites W2117132372 @default.
- W3136354046 cites W2122612155 @default.
- W3136354046 cites W2157155801 @default.
- W3136354046 cites W2159038097 @default.
- W3136354046 cites W2161737270 @default.
- W3136354046 cites W2799586621 @default.
- W3136354046 cites W2803713296 @default.
- W3136354046 cites W2911993076 @default.
- W3136354046 cites W2980519870 @default.
- W3136354046 cites W3084058454 @default.
- W3136354046 cites W3090425643 @default.
- W3136354046 cites W3096570041 @default.
- W3136354046 cites W3100087883 @default.
- W3136354046 cites W3102567155 @default.
- W3136354046 cites W3103392591 @default.
- W3136354046 cites W3103507725 @default.
- W3136354046 cites W3104563490 @default.
- W3136354046 cites W3106007948 @default.
- W3136354046 cites W3121796360 @default.
- W3136354046 cites W3139153312 @default.
- W3136354046 doi "https://doi.org/10.1103/physrevd.104.034026" @default.
- W3136354046 hasPublicationYear "2021" @default.
- W3136354046 type Work @default.
- W3136354046 sameAs 3136354046 @default.
- W3136354046 citedByCount "4" @default.
- W3136354046 countsByYear W31363540462021 @default.
- W3136354046 countsByYear W31363540462022 @default.
- W3136354046 countsByYear W31363540462023 @default.
- W3136354046 crossrefType "journal-article" @default.
- W3136354046 hasAuthorship W3136354046A5031362015 @default.
- W3136354046 hasAuthorship W3136354046A5042818141 @default.
- W3136354046 hasAuthorship W3136354046A5070556975 @default.
- W3136354046 hasBestOaLocation W31363540461 @default.
- W3136354046 hasConcept C105795698 @default.
- W3136354046 hasConcept C107165499 @default.
- W3136354046 hasConcept C109214941 @default.
- W3136354046 hasConcept C117251300 @default.
- W3136354046 hasConcept C121332964 @default.
- W3136354046 hasConcept C121864883 @default.
- W3136354046 hasConcept C145148216 @default.
- W3136354046 hasConcept C173523689 @default.
- W3136354046 hasConcept C191486275 @default.
- W3136354046 hasConcept C197129107 @default.
- W3136354046 hasConcept C207114421 @default.
- W3136354046 hasConcept C23123220 @default.
- W3136354046 hasConcept C2775859925 @default.
- W3136354046 hasConcept C32848918 @default.
- W3136354046 hasConcept C33923547 @default.
- W3136354046 hasConcept C41008148 @default.
- W3136354046 hasConcept C49937458 @default.
- W3136354046 hasConcept C62520636 @default.
- W3136354046 hasConcept C87668248 @default.
- W3136354046 hasConceptScore W3136354046C105795698 @default.
- W3136354046 hasConceptScore W3136354046C107165499 @default.
- W3136354046 hasConceptScore W3136354046C109214941 @default.
- W3136354046 hasConceptScore W3136354046C117251300 @default.
- W3136354046 hasConceptScore W3136354046C121332964 @default.
- W3136354046 hasConceptScore W3136354046C121864883 @default.
- W3136354046 hasConceptScore W3136354046C145148216 @default.
- W3136354046 hasConceptScore W3136354046C173523689 @default.
- W3136354046 hasConceptScore W3136354046C191486275 @default.
- W3136354046 hasConceptScore W3136354046C197129107 @default.
- W3136354046 hasConceptScore W3136354046C207114421 @default.
- W3136354046 hasConceptScore W3136354046C23123220 @default.
- W3136354046 hasConceptScore W3136354046C2775859925 @default.
- W3136354046 hasConceptScore W3136354046C32848918 @default.
- W3136354046 hasConceptScore W3136354046C33923547 @default.
- W3136354046 hasConceptScore W3136354046C41008148 @default.
- W3136354046 hasConceptScore W3136354046C49937458 @default.