Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136354976> ?p ?o ?g. }
- W3136354976 endingPage "3678" @default.
- W3136354976 startingPage "3665" @default.
- W3136354976 abstract "Purpose Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of lymphoma with high mortality and poor prognosis that especially has a high incidence in Asia. Accurate segmentation of DLBCL lesions is crucial for clinical radiation therapy. However, manual delineation of DLBCL lesions is tedious and time-consuming. Automatic segmentation provides an alternative solution but is difficult for diffuse lesions without the sufficient utilization of multimodality information. Our work is the first study focusing on positron emission tomography and computed tomography (PET-CT) feature fusion for the DLBCL segmentation issue. We aim to improve the fusion performance of complementary information contained in PET-CT imaging with a hybrid learning module in the supervised convolutional neural network. Methods First, two encoder branches extract single-modality features, respectively. Next, the hybrid learning component utilizes them to generate spatial fusion maps which can quantify the contribution of complementary information. Such feature fusion maps are then concatenated with specific-modality (i.e., PET and CT) feature maps to obtain a representation of the final fused feature maps in different scales. Finally, the reconstruction part of our network creates a prediction map of DLBCL lesions by integrating and up-sampling the final fused feature maps from encoder blocks in different scales. Results The ability of our method was evaluated to detect foreground and segment lesions in three independent body regions (nasopharynx, chest, and abdomen) of a set of 45 PET-CT scans. Extensive ablation experiments compared our method to four baseline techniques for multimodality fusion (input-level (IL) fusion, multichannel (MC) strategy, multibranch (MB) strategy, and quantitative weighting (QW) fusion). The results showed that our method achieved a high detection accuracy (99.63% in the nasopharynx, 99.51% in the chest, and 99.21% in the abdomen) and had the superiority in segmentation performance with the mean dice similarity coefficient (DSC) of 73.03% and the modified Hausdorff distance (MHD) of 4.39 mm, when compared with the baselines (DSC: IL: 53.08%, MC: 63.59%, MB: 69.98%, and QW: 72.19%; MHD: IL: 12.16 mm, MC: 6.46 mm, MB: 4.83 mm, and QW: 4.89 mm). Conclusions A promising segmentation method has been proposed for the challenging DLBCL lesions in PET-CT images, which improves the understanding of complementary information by feature fusion and may guide clinical radiotherapy. The statistically significant analysis based on P-value calculation has indicated a degree of significant difference between our proposed method and other baselines (almost metrics: P < 0.05). This is a preliminary research using a small sample size, and we will collect data continually to achieve the larger verification study." @default.
- W3136354976 created "2021-03-29" @default.
- W3136354976 creator A5010794546 @default.
- W3136354976 creator A5011688144 @default.
- W3136354976 creator A5032396975 @default.
- W3136354976 creator A5036031567 @default.
- W3136354976 creator A5049870510 @default.
- W3136354976 creator A5069739901 @default.
- W3136354976 creator A5079242743 @default.
- W3136354976 creator A5081179416 @default.
- W3136354976 date "2021-06-22" @default.
- W3136354976 modified "2023-10-18" @default.
- W3136354976 title "Diffuse large B‐cell lymphoma segmentation in PET‐CT images via hybrid learning for feature fusion" @default.
- W3136354976 cites W1996736246 @default.
- W3136354976 cites W2016935978 @default.
- W3136354976 cites W2069102612 @default.
- W3136354976 cites W2069767356 @default.
- W3136354976 cites W2074707348 @default.
- W3136354976 cites W2082526668 @default.
- W3136354976 cites W2088783247 @default.
- W3136354976 cites W2100858680 @default.
- W3136354976 cites W2107105977 @default.
- W3136354976 cites W2124173105 @default.
- W3136354976 cites W2383601426 @default.
- W3136354976 cites W2518731208 @default.
- W3136354976 cites W2533800772 @default.
- W3136354976 cites W2558789525 @default.
- W3136354976 cites W2731173046 @default.
- W3136354976 cites W2805544462 @default.
- W3136354976 cites W2902972155 @default.
- W3136354976 cites W2905101266 @default.
- W3136354976 cites W2907760128 @default.
- W3136354976 cites W2964045146 @default.
- W3136354976 cites W2964350391 @default.
- W3136354976 cites W2996981898 @default.
- W3136354976 cites W3006103913 @default.
- W3136354976 cites W3021922582 @default.
- W3136354976 cites W3026845814 @default.
- W3136354976 cites W3106286734 @default.
- W3136354976 cites W317170363 @default.
- W3136354976 cites W4376522538 @default.
- W3136354976 cites W2065437550 @default.
- W3136354976 doi "https://doi.org/10.1002/mp.14847" @default.
- W3136354976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33735451" @default.
- W3136354976 hasPublicationYear "2021" @default.
- W3136354976 type Work @default.
- W3136354976 sameAs 3136354976 @default.
- W3136354976 citedByCount "16" @default.
- W3136354976 countsByYear W31363549762021 @default.
- W3136354976 countsByYear W31363549762022 @default.
- W3136354976 countsByYear W31363549762023 @default.
- W3136354976 crossrefType "journal-article" @default.
- W3136354976 hasAuthorship W3136354976A5010794546 @default.
- W3136354976 hasAuthorship W3136354976A5011688144 @default.
- W3136354976 hasAuthorship W3136354976A5032396975 @default.
- W3136354976 hasAuthorship W3136354976A5036031567 @default.
- W3136354976 hasAuthorship W3136354976A5049870510 @default.
- W3136354976 hasAuthorship W3136354976A5069739901 @default.
- W3136354976 hasAuthorship W3136354976A5079242743 @default.
- W3136354976 hasAuthorship W3136354976A5081179416 @default.
- W3136354976 hasConcept C108583219 @default.
- W3136354976 hasConcept C111919701 @default.
- W3136354976 hasConcept C115961682 @default.
- W3136354976 hasConcept C118505674 @default.
- W3136354976 hasConcept C126838900 @default.
- W3136354976 hasConcept C138885662 @default.
- W3136354976 hasConcept C142724271 @default.
- W3136354976 hasConcept C153180895 @default.
- W3136354976 hasConcept C154945302 @default.
- W3136354976 hasConcept C2775842073 @default.
- W3136354976 hasConcept C2776401178 @default.
- W3136354976 hasConcept C2778559949 @default.
- W3136354976 hasConcept C2779338263 @default.
- W3136354976 hasConcept C2780226545 @default.
- W3136354976 hasConcept C31601959 @default.
- W3136354976 hasConcept C41008148 @default.
- W3136354976 hasConcept C41895202 @default.
- W3136354976 hasConcept C69744172 @default.
- W3136354976 hasConcept C71924100 @default.
- W3136354976 hasConcept C81363708 @default.
- W3136354976 hasConcept C89600930 @default.
- W3136354976 hasConceptScore W3136354976C108583219 @default.
- W3136354976 hasConceptScore W3136354976C111919701 @default.
- W3136354976 hasConceptScore W3136354976C115961682 @default.
- W3136354976 hasConceptScore W3136354976C118505674 @default.
- W3136354976 hasConceptScore W3136354976C126838900 @default.
- W3136354976 hasConceptScore W3136354976C138885662 @default.
- W3136354976 hasConceptScore W3136354976C142724271 @default.
- W3136354976 hasConceptScore W3136354976C153180895 @default.
- W3136354976 hasConceptScore W3136354976C154945302 @default.
- W3136354976 hasConceptScore W3136354976C2775842073 @default.
- W3136354976 hasConceptScore W3136354976C2776401178 @default.
- W3136354976 hasConceptScore W3136354976C2778559949 @default.
- W3136354976 hasConceptScore W3136354976C2779338263 @default.
- W3136354976 hasConceptScore W3136354976C2780226545 @default.
- W3136354976 hasConceptScore W3136354976C31601959 @default.
- W3136354976 hasConceptScore W3136354976C41008148 @default.
- W3136354976 hasConceptScore W3136354976C41895202 @default.