Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136357499> ?p ?o ?g. }
- W3136357499 endingPage "55231" @default.
- W3136357499 startingPage "55214" @default.
- W3136357499 abstract "In laser-based additive manufacturing (AM) of metal parts from powder bed, information about actual part quality obtained during build is essential for cost-efficient production and high product quality. Reliable and effective monitoring strategies for laser powder bed fusion (LPBF) therefore remain in high demand and are the subject of current research. To address this demand, a novel analysis approach using high dynamic range (HDR) optical imaging in combination with convolutional neural networks (CNN) is proposed for spatially resolved and layer-wise prediction of the surface roughness of LPBF parts. In a further step, the predicted surface roughness maps are used as a feedback signal for a reinforcement learning technique that employs a dynamics model to subsequently identify optimal process parameters under varying and uncertain conditions. The proposed approach ultimately combines the estimation of the local surface roughness based on image texture and model-based reinforcement learning to an in-situ optimization framework for LPBF processes. In addition, the relationship between the layer surface roughness of the part and the overall part density is discussed on the basis of experimental data, which also indicate the applicability of the proposed method in industrial environments. This preliminary study is a first step towards highly adaptive and intelligent machines in the field of automated laser powder bed fusion with the primary goals of reducing production costs and improving the environmental fingerprint as well as print quality." @default.
- W3136357499 created "2021-03-29" @default.
- W3136357499 creator A5054370344 @default.
- W3136357499 creator A5055025028 @default.
- W3136357499 creator A5055577939 @default.
- W3136357499 creator A5058493788 @default.
- W3136357499 creator A5061168413 @default.
- W3136357499 date "2021-01-01" @default.
- W3136357499 modified "2023-10-05" @default.
- W3136357499 title "Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning" @default.
- W3136357499 cites W1500528358 @default.
- W3136357499 cites W1510233739 @default.
- W3136357499 cites W1661604898 @default.
- W3136357499 cites W1966799659 @default.
- W3136357499 cites W1974079270 @default.
- W3136357499 cites W1988368097 @default.
- W3136357499 cites W1992611033 @default.
- W3136357499 cites W2007140193 @default.
- W3136357499 cites W2012433850 @default.
- W3136357499 cites W2017604896 @default.
- W3136357499 cites W2025309606 @default.
- W3136357499 cites W2034931354 @default.
- W3136357499 cites W2044465660 @default.
- W3136357499 cites W2045132862 @default.
- W3136357499 cites W2046510171 @default.
- W3136357499 cites W2054406417 @default.
- W3136357499 cites W2072455331 @default.
- W3136357499 cites W2073787051 @default.
- W3136357499 cites W2076063813 @default.
- W3136357499 cites W2082725023 @default.
- W3136357499 cites W2117671523 @default.
- W3136357499 cites W2148430292 @default.
- W3136357499 cites W2165402706 @default.
- W3136357499 cites W2169714549 @default.
- W3136357499 cites W2192772080 @default.
- W3136357499 cites W2250894080 @default.
- W3136357499 cites W2330358343 @default.
- W3136357499 cites W2409074557 @default.
- W3136357499 cites W2415791065 @default.
- W3136357499 cites W2532053579 @default.
- W3136357499 cites W2580909119 @default.
- W3136357499 cites W2594332903 @default.
- W3136357499 cites W2600285145 @default.
- W3136357499 cites W2601486059 @default.
- W3136357499 cites W2737220413 @default.
- W3136357499 cites W2743237541 @default.
- W3136357499 cites W2782559101 @default.
- W3136357499 cites W2792732866 @default.
- W3136357499 cites W2803636176 @default.
- W3136357499 cites W2911964244 @default.
- W3136357499 cites W2931028544 @default.
- W3136357499 cites W2946257081 @default.
- W3136357499 cites W2949369277 @default.
- W3136357499 cites W2955239464 @default.
- W3136357499 cites W2962872206 @default.
- W3136357499 cites W2962899903 @default.
- W3136357499 cites W2967051224 @default.
- W3136357499 cites W2972099375 @default.
- W3136357499 cites W2998176839 @default.
- W3136357499 cites W3001039722 @default.
- W3136357499 cites W3002811294 @default.
- W3136357499 cites W3008629151 @default.
- W3136357499 cites W3009320958 @default.
- W3136357499 cites W3030128683 @default.
- W3136357499 cites W3037178456 @default.
- W3136357499 cites W3043532440 @default.
- W3136357499 cites W3043705189 @default.
- W3136357499 cites W3047127827 @default.
- W3136357499 cites W3049618663 @default.
- W3136357499 cites W3080363634 @default.
- W3136357499 cites W3090897645 @default.
- W3136357499 cites W4236229596 @default.
- W3136357499 cites W4241426378 @default.
- W3136357499 cites W4249916716 @default.
- W3136357499 doi "https://doi.org/10.1109/access.2021.3067302" @default.
- W3136357499 hasPublicationYear "2021" @default.
- W3136357499 type Work @default.
- W3136357499 sameAs 3136357499 @default.
- W3136357499 citedByCount "21" @default.
- W3136357499 countsByYear W31363574992021 @default.
- W3136357499 countsByYear W31363574992022 @default.
- W3136357499 countsByYear W31363574992023 @default.
- W3136357499 crossrefType "journal-article" @default.
- W3136357499 hasAuthorship W3136357499A5054370344 @default.
- W3136357499 hasAuthorship W3136357499A5055025028 @default.
- W3136357499 hasAuthorship W3136357499A5055577939 @default.
- W3136357499 hasAuthorship W3136357499A5058493788 @default.
- W3136357499 hasAuthorship W3136357499A5061168413 @default.
- W3136357499 hasBestOaLocation W31363574991 @default.
- W3136357499 hasConcept C107365816 @default.
- W3136357499 hasConcept C111472728 @default.
- W3136357499 hasConcept C111919701 @default.
- W3136357499 hasConcept C119857082 @default.
- W3136357499 hasConcept C138885662 @default.
- W3136357499 hasConcept C154945302 @default.
- W3136357499 hasConcept C159985019 @default.
- W3136357499 hasConcept C192562407 @default.
- W3136357499 hasConcept C2779530757 @default.