Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136358712> ?p ?o ?g. }
- W3136358712 endingPage "117934" @default.
- W3136358712 startingPage "117934" @default.
- W3136358712 abstract "Segmentation of brain tissue types from diffusion MRI (dMRI) is an important task, required for quantification of brain microstructure and for improving tractography. Current dMRI segmentation is mostly based on anatomical MRI (e.g., T1- and T2-weighted) segmentation that is registered to the dMRI space. However, such inter-modality registration is challenging due to more image distortions and lower image resolution in dMRI as compared with anatomical MRI. In this study, we present a deep learning method for diffusion MRI segmentation, which we refer to as DDSeg. Our proposed method learns tissue segmentation from high-quality imaging data from the Human Connectome Project (HCP), where registration of anatomical MRI to dMRI is more precise. The method is then able to predict a tissue segmentation directly from new dMRI data, including data collected with different acquisition protocols, without requiring anatomical data and inter-modality registration. We train a convolutional neural network (CNN) to learn a tissue segmentation model using a novel augmented target loss function designed to improve accuracy in regions of tissue boundary. To further improve accuracy, our method adds diffusion kurtosis imaging (DKI) parameters that characterize non-Gaussian water molecule diffusion to the conventional diffusion tensor imaging parameters. The DKI parameters are calculated from the recently proposed mean-kurtosis-curve method that corrects implausible DKI parameter values and provides additional features that discriminate between tissue types. We demonstrate high tissue segmentation accuracy on HCP data, and also when applying the HCP-trained model on dMRI data from other acquisitions with lower resolution and fewer gradient directions." @default.
- W3136358712 created "2021-03-29" @default.
- W3136358712 creator A5004577779 @default.
- W3136358712 creator A5034377613 @default.
- W3136358712 creator A5041180241 @default.
- W3136358712 creator A5044865557 @default.
- W3136358712 creator A5053447705 @default.
- W3136358712 creator A5082042615 @default.
- W3136358712 creator A5083379601 @default.
- W3136358712 date "2021-06-01" @default.
- W3136358712 modified "2023-10-18" @default.
- W3136358712 title "Deep learning based segmentation of brain tissue from diffusion MRI" @default.
- W3136358712 cites W1965894642 @default.
- W3136358712 cites W1970449649 @default.
- W3136358712 cites W1970936375 @default.
- W3136358712 cites W1974312239 @default.
- W3136358712 cites W1979669373 @default.
- W3136358712 cites W1983208069 @default.
- W3136358712 cites W1983567990 @default.
- W3136358712 cites W1986756161 @default.
- W3136358712 cites W1987869189 @default.
- W3136358712 cites W1990848905 @default.
- W3136358712 cites W2001611992 @default.
- W3136358712 cites W2006096283 @default.
- W3136358712 cites W2007146250 @default.
- W3136358712 cites W2015391962 @default.
- W3136358712 cites W2063399177 @default.
- W3136358712 cites W2065069092 @default.
- W3136358712 cites W2069794666 @default.
- W3136358712 cites W2073111135 @default.
- W3136358712 cites W2082526668 @default.
- W3136358712 cites W2112796928 @default.
- W3136358712 cites W2142554529 @default.
- W3136358712 cites W2143391902 @default.
- W3136358712 cites W2155162743 @default.
- W3136358712 cites W2328247767 @default.
- W3136358712 cites W2541429320 @default.
- W3136358712 cites W2621028221 @default.
- W3136358712 cites W2756040291 @default.
- W3136358712 cites W2766076071 @default.
- W3136358712 cites W2766098209 @default.
- W3136358712 cites W2783918318 @default.
- W3136358712 cites W2789530810 @default.
- W3136358712 cites W2791155853 @default.
- W3136358712 cites W2799893641 @default.
- W3136358712 cites W2803890652 @default.
- W3136358712 cites W2804860796 @default.
- W3136358712 cites W2912880457 @default.
- W3136358712 cites W2914540786 @default.
- W3136358712 cites W2939491881 @default.
- W3136358712 cites W2950030754 @default.
- W3136358712 cites W2951944555 @default.
- W3136358712 cites W2966883685 @default.
- W3136358712 cites W2977883299 @default.
- W3136358712 cites W3008406630 @default.
- W3136358712 cites W3013280574 @default.
- W3136358712 cites W3021228217 @default.
- W3136358712 cites W3031827021 @default.
- W3136358712 cites W3043580173 @default.
- W3136358712 cites W3103325175 @default.
- W3136358712 cites W3104087655 @default.
- W3136358712 cites W3107209222 @default.
- W3136358712 cites W4230920194 @default.
- W3136358712 cites W4241074797 @default.
- W3136358712 doi "https://doi.org/10.1016/j.neuroimage.2021.117934" @default.
- W3136358712 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8139182" @default.
- W3136358712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33737246" @default.
- W3136358712 hasPublicationYear "2021" @default.
- W3136358712 type Work @default.
- W3136358712 sameAs 3136358712 @default.
- W3136358712 citedByCount "29" @default.
- W3136358712 countsByYear W31363587122021 @default.
- W3136358712 countsByYear W31363587122022 @default.
- W3136358712 countsByYear W31363587122023 @default.
- W3136358712 crossrefType "journal-article" @default.
- W3136358712 hasAuthorship W3136358712A5004577779 @default.
- W3136358712 hasAuthorship W3136358712A5034377613 @default.
- W3136358712 hasAuthorship W3136358712A5041180241 @default.
- W3136358712 hasAuthorship W3136358712A5044865557 @default.
- W3136358712 hasAuthorship W3136358712A5053447705 @default.
- W3136358712 hasAuthorship W3136358712A5082042615 @default.
- W3136358712 hasAuthorship W3136358712A5083379601 @default.
- W3136358712 hasBestOaLocation W31363587121 @default.
- W3136358712 hasConcept C105795698 @default.
- W3136358712 hasConcept C108583219 @default.
- W3136358712 hasConcept C126838900 @default.
- W3136358712 hasConcept C143409427 @default.
- W3136358712 hasConcept C149550507 @default.
- W3136358712 hasConcept C153180895 @default.
- W3136358712 hasConcept C154945302 @default.
- W3136358712 hasConcept C157787499 @default.
- W3136358712 hasConcept C166963901 @default.
- W3136358712 hasConcept C169760540 @default.
- W3136358712 hasConcept C3018011982 @default.
- W3136358712 hasConcept C31972630 @default.
- W3136358712 hasConcept C33923547 @default.
- W3136358712 hasConcept C41008148 @default.
- W3136358712 hasConcept C54170458 @default.