Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136359558> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3136359558 endingPage "307" @default.
- W3136359558 startingPage "291" @default.
- W3136359558 abstract "Due to the growth of data and widespread usage of Machine Learning (ML) by non-experts, automation and scalability are becoming key issues for ML. This paper presents an automated and scalable framework for ML that requires minimum human input. We designed the framework for the domain of telecommunications risk management. This domain often requires non-ML-experts to continuously update supervised learning models that are trained on huge amounts of data. Thus, the framework uses Automated Machine Learning (AutoML), to select and tune the ML models, and distributed ML, to deal with Big Data. The modules included in the framework are task detection (to detect classification or regression), data preprocessing, feature selection, model training, and deployment. In this paper, we focus the experiments on the model training module. We first analyze the capabilities of eight AutoML tools: Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka, H2O AutoML, Rminer, TPOT, and TransmogrifAI. Then, to select the tool for model training, we performed a benchmark with the only two tools that address a distributed ML (H2O AutoML and TransmogrifAI). The experiments used three real-world datasets from the telecommunications domain (churn, event forecasting, and fraud detection), as provided by an analytics company. The experiments allowed us to measure the computational effort and predictive capability of the AutoML tools. Both tools obtained high-quality results and did not present substantial predictive differences. Nevertheless, H2O AutoML was selected by the analytics company for the model training module, since it was considered a more mature technology that presented a more interesting set of features (e.g., integration with more platforms). After choosing H2O AutoML for the ML training, we selected the technologies for the remaining components of the architecture (e.g., data preprocessing and web interface)." @default.
- W3136359558 created "2021-03-29" @default.
- W3136359558 creator A5014796819 @default.
- W3136359558 creator A5032224529 @default.
- W3136359558 creator A5042734311 @default.
- W3136359558 creator A5073250710 @default.
- W3136359558 creator A5077829125 @default.
- W3136359558 date "2021-01-01" @default.
- W3136359558 modified "2023-10-16" @default.
- W3136359558 title "A Scalable and Automated Machine Learning Framework to Support Risk Management" @default.
- W3136359558 cites W1578517626 @default.
- W3136359558 cites W1647221522 @default.
- W3136359558 cites W2009332171 @default.
- W3136359558 cites W2040884411 @default.
- W3136359558 cites W2102539288 @default.
- W3136359558 cites W2132862423 @default.
- W3136359558 cites W2148143831 @default.
- W3136359558 cites W2338065342 @default.
- W3136359558 cites W2566234880 @default.
- W3136359558 cites W2899743487 @default.
- W3136359558 cites W2955219525 @default.
- W3136359558 cites W2963628590 @default.
- W3136359558 cites W2964024268 @default.
- W3136359558 cites W2970427081 @default.
- W3136359558 cites W3005880794 @default.
- W3136359558 cites W3010860902 @default.
- W3136359558 cites W910966894 @default.
- W3136359558 doi "https://doi.org/10.1007/978-3-030-71158-0_14" @default.
- W3136359558 hasPublicationYear "2021" @default.
- W3136359558 type Work @default.
- W3136359558 sameAs 3136359558 @default.
- W3136359558 citedByCount "2" @default.
- W3136359558 countsByYear W31363595582022 @default.
- W3136359558 crossrefType "book-chapter" @default.
- W3136359558 hasAuthorship W3136359558A5014796819 @default.
- W3136359558 hasAuthorship W3136359558A5032224529 @default.
- W3136359558 hasAuthorship W3136359558A5042734311 @default.
- W3136359558 hasAuthorship W3136359558A5073250710 @default.
- W3136359558 hasAuthorship W3136359558A5077829125 @default.
- W3136359558 hasBestOaLocation W31363595582 @default.
- W3136359558 hasConcept C10551718 @default.
- W3136359558 hasConcept C119857082 @default.
- W3136359558 hasConcept C124101348 @default.
- W3136359558 hasConcept C13280743 @default.
- W3136359558 hasConcept C134306372 @default.
- W3136359558 hasConcept C136389625 @default.
- W3136359558 hasConcept C154945302 @default.
- W3136359558 hasConcept C185798385 @default.
- W3136359558 hasConcept C205649164 @default.
- W3136359558 hasConcept C2522767166 @default.
- W3136359558 hasConcept C33923547 @default.
- W3136359558 hasConcept C34736171 @default.
- W3136359558 hasConcept C36503486 @default.
- W3136359558 hasConcept C41008148 @default.
- W3136359558 hasConcept C48044578 @default.
- W3136359558 hasConcept C50644808 @default.
- W3136359558 hasConcept C75684735 @default.
- W3136359558 hasConcept C77088390 @default.
- W3136359558 hasConcept C79158427 @default.
- W3136359558 hasConceptScore W3136359558C10551718 @default.
- W3136359558 hasConceptScore W3136359558C119857082 @default.
- W3136359558 hasConceptScore W3136359558C124101348 @default.
- W3136359558 hasConceptScore W3136359558C13280743 @default.
- W3136359558 hasConceptScore W3136359558C134306372 @default.
- W3136359558 hasConceptScore W3136359558C136389625 @default.
- W3136359558 hasConceptScore W3136359558C154945302 @default.
- W3136359558 hasConceptScore W3136359558C185798385 @default.
- W3136359558 hasConceptScore W3136359558C205649164 @default.
- W3136359558 hasConceptScore W3136359558C2522767166 @default.
- W3136359558 hasConceptScore W3136359558C33923547 @default.
- W3136359558 hasConceptScore W3136359558C34736171 @default.
- W3136359558 hasConceptScore W3136359558C36503486 @default.
- W3136359558 hasConceptScore W3136359558C41008148 @default.
- W3136359558 hasConceptScore W3136359558C48044578 @default.
- W3136359558 hasConceptScore W3136359558C50644808 @default.
- W3136359558 hasConceptScore W3136359558C75684735 @default.
- W3136359558 hasConceptScore W3136359558C77088390 @default.
- W3136359558 hasConceptScore W3136359558C79158427 @default.
- W3136359558 hasLocation W31363595581 @default.
- W3136359558 hasLocation W31363595582 @default.
- W3136359558 hasOpenAccess W3136359558 @default.
- W3136359558 hasPrimaryLocation W31363595581 @default.
- W3136359558 hasRelatedWork W138569904 @default.
- W3136359558 hasRelatedWork W2367545121 @default.
- W3136359558 hasRelatedWork W2368524271 @default.
- W3136359558 hasRelatedWork W2389417819 @default.
- W3136359558 hasRelatedWork W2390914021 @default.
- W3136359558 hasRelatedWork W2482165163 @default.
- W3136359558 hasRelatedWork W2989490741 @default.
- W3136359558 hasRelatedWork W3010890513 @default.
- W3136359558 hasRelatedWork W3092506759 @default.
- W3136359558 hasRelatedWork W4248881655 @default.
- W3136359558 isParatext "false" @default.
- W3136359558 isRetracted "false" @default.
- W3136359558 magId "3136359558" @default.
- W3136359558 workType "book-chapter" @default.