Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136363049> ?p ?o ?g. }
- W3136363049 endingPage "1409" @default.
- W3136363049 startingPage "1393" @default.
- W3136363049 abstract "We solve a stochastic high-dimensional optimal harvesting problem by using reinforcement learning algorithms developed for agents who learn an optimal policy in a sequential decision process through repeated experience. This approach produces optimal solutions without discretization of state and control variables. Our stand-level model includes mixed species, tree size structure, optimal harvest timing, choice between rotation and continuous cover forestry, stochasticity in stand growth, and stochasticity in the occurrence of natural disasters. The optimal solution or policy maps the system state to the set of actions, i.e., clear-cutting, thinning, or no harvest decisions as well as the intensity of thinning over tree species and size classes. The algorithm repeats the solutions for deterministic problems computed earlier with time-consuming methods. Optimal policy describes harvesting choices from any initial state and reveals how the initial thinning versus clear-cutting choice depends on the economic and ecological factors. Stochasticity in stand growth increases the diversity of species composition. Despite the high variability in natural regeneration, the optimal policy closely satisfies the certainty equivalence principle. The effect of natural disasters is similar to an increase in the interest rate, but in contrast to earlier results, this tends to change the management regime from rotation forestry to continuous cover management." @default.
- W3136363049 created "2021-03-29" @default.
- W3136363049 creator A5004651660 @default.
- W3136363049 creator A5020180428 @default.
- W3136363049 creator A5027821152 @default.
- W3136363049 creator A5050308422 @default.
- W3136363049 creator A5057590420 @default.
- W3136363049 date "2021-10-01" @default.
- W3136363049 modified "2023-10-10" @default.
- W3136363049 title "Reinforcement learning in optimizing forest management" @default.
- W3136363049 cites W1519256978 @default.
- W3136363049 cites W1859122189 @default.
- W3136363049 cites W1958744209 @default.
- W3136363049 cites W1963875723 @default.
- W3136363049 cites W1971548467 @default.
- W3136363049 cites W1973544918 @default.
- W3136363049 cites W1977655452 @default.
- W3136363049 cites W1983311511 @default.
- W3136363049 cites W1983732167 @default.
- W3136363049 cites W1991701168 @default.
- W3136363049 cites W2008723137 @default.
- W3136363049 cites W2009303086 @default.
- W3136363049 cites W2108141360 @default.
- W3136363049 cites W2108529062 @default.
- W3136363049 cites W2112927222 @default.
- W3136363049 cites W2120465407 @default.
- W3136363049 cites W2122621201 @default.
- W3136363049 cites W2134293360 @default.
- W3136363049 cites W2142961378 @default.
- W3136363049 cites W2145339207 @default.
- W3136363049 cites W2164768375 @default.
- W3136363049 cites W2165770743 @default.
- W3136363049 cites W2257979135 @default.
- W3136363049 cites W2318681726 @default.
- W3136363049 cites W2594146932 @default.
- W3136363049 cites W2594206217 @default.
- W3136363049 cites W2912292140 @default.
- W3136363049 cites W2915619215 @default.
- W3136363049 cites W2939608414 @default.
- W3136363049 cites W2987981223 @default.
- W3136363049 cites W2999839200 @default.
- W3136363049 cites W3025664863 @default.
- W3136363049 cites W3036427332 @default.
- W3136363049 cites W3042156811 @default.
- W3136363049 cites W4236942139 @default.
- W3136363049 doi "https://doi.org/10.1139/cjfr-2020-0447" @default.
- W3136363049 hasPublicationYear "2021" @default.
- W3136363049 type Work @default.
- W3136363049 sameAs 3136363049 @default.
- W3136363049 citedByCount "16" @default.
- W3136363049 countsByYear W31363630492021 @default.
- W3136363049 countsByYear W31363630492022 @default.
- W3136363049 countsByYear W31363630492023 @default.
- W3136363049 crossrefType "journal-article" @default.
- W3136363049 hasAuthorship W3136363049A5004651660 @default.
- W3136363049 hasAuthorship W3136363049A5020180428 @default.
- W3136363049 hasAuthorship W3136363049A5027821152 @default.
- W3136363049 hasAuthorship W3136363049A5050308422 @default.
- W3136363049 hasAuthorship W3136363049A5057590420 @default.
- W3136363049 hasBestOaLocation W31363630491 @default.
- W3136363049 hasConcept C111919701 @default.
- W3136363049 hasConcept C113174947 @default.
- W3136363049 hasConcept C118615104 @default.
- W3136363049 hasConcept C126255220 @default.
- W3136363049 hasConcept C127413603 @default.
- W3136363049 hasConcept C134306372 @default.
- W3136363049 hasConcept C154945302 @default.
- W3136363049 hasConcept C18903297 @default.
- W3136363049 hasConcept C2776502983 @default.
- W3136363049 hasConcept C2780069185 @default.
- W3136363049 hasConcept C2780428219 @default.
- W3136363049 hasConcept C2781353100 @default.
- W3136363049 hasConcept C28631016 @default.
- W3136363049 hasConcept C33923547 @default.
- W3136363049 hasConcept C41008148 @default.
- W3136363049 hasConcept C78519656 @default.
- W3136363049 hasConcept C86803240 @default.
- W3136363049 hasConcept C97541855 @default.
- W3136363049 hasConcept C98045186 @default.
- W3136363049 hasConceptScore W3136363049C111919701 @default.
- W3136363049 hasConceptScore W3136363049C113174947 @default.
- W3136363049 hasConceptScore W3136363049C118615104 @default.
- W3136363049 hasConceptScore W3136363049C126255220 @default.
- W3136363049 hasConceptScore W3136363049C127413603 @default.
- W3136363049 hasConceptScore W3136363049C134306372 @default.
- W3136363049 hasConceptScore W3136363049C154945302 @default.
- W3136363049 hasConceptScore W3136363049C18903297 @default.
- W3136363049 hasConceptScore W3136363049C2776502983 @default.
- W3136363049 hasConceptScore W3136363049C2780069185 @default.
- W3136363049 hasConceptScore W3136363049C2780428219 @default.
- W3136363049 hasConceptScore W3136363049C2781353100 @default.
- W3136363049 hasConceptScore W3136363049C28631016 @default.
- W3136363049 hasConceptScore W3136363049C33923547 @default.
- W3136363049 hasConceptScore W3136363049C41008148 @default.
- W3136363049 hasConceptScore W3136363049C78519656 @default.
- W3136363049 hasConceptScore W3136363049C86803240 @default.
- W3136363049 hasConceptScore W3136363049C97541855 @default.
- W3136363049 hasConceptScore W3136363049C98045186 @default.