Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136365253> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3136365253 endingPage "112" @default.
- W3136365253 startingPage "99" @default.
- W3136365253 abstract "AbstractRecent studies show that heart attack is one of the severe problems in today’s world. Prediction is one of the crucial challenges in the medical field. In the heart, there are two main blood vessels for the supply of blood through coronary arteries. If the arteries get completely blocked, then it leads to a heart attack. The healthcare field has lots of data related to different diseases, so machine learning techniques are useful to find results effectively for predicting heart diseases. In this paper, data was preprocessed in order to remove the noisy data, filling the missing values using measures of central tendencies. Later, the refined dataset was classified using classifiers apart from prediction. The numbers of attributes were reduced using dimensionality reduction techniques namely Linear Transformation Techniques (LTT) like Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The performances of the classifiers were analyzed based on various accuracy-related metrics. The designed classifier model is able to predict the occurrence of a heart attack. The Support Vector Machine (SVM) classifier was applied along with the three kernels namely Linear (linear), Radial Basis Function (RBF), and Polynomial (poly). Another technique namely Decision Tree (DT) was also applied on the Cleveland dataset, and the results were compared in detail and effective conclusions were drawn from the results.KeywordsHeart attackSupport vector machineLinear transformation techniques (LTT)Principal component analysis (PCA)Linear discriminant analysis (LDA)" @default.
- W3136365253 created "2021-03-29" @default.
- W3136365253 creator A5004038472 @default.
- W3136365253 creator A5012074055 @default.
- W3136365253 creator A5019743161 @default.
- W3136365253 date "2021-01-01" @default.
- W3136365253 modified "2023-09-25" @default.
- W3136365253 title "Heart Attack Classification Using SVM with LDA and PCA Linear Transformation Techniques" @default.
- W3136365253 cites W2061359421 @default.
- W3136365253 cites W2128552241 @default.
- W3136365253 cites W2142711599 @default.
- W3136365253 cites W2529133199 @default.
- W3136365253 cites W2557753647 @default.
- W3136365253 cites W2902748903 @default.
- W3136365253 cites W2949767632 @default.
- W3136365253 cites W2954788759 @default.
- W3136365253 cites W309845829 @default.
- W3136365253 cites W44177890 @default.
- W3136365253 doi "https://doi.org/10.1007/978-981-33-4046-6_10" @default.
- W3136365253 hasPublicationYear "2021" @default.
- W3136365253 type Work @default.
- W3136365253 sameAs 3136365253 @default.
- W3136365253 citedByCount "1" @default.
- W3136365253 countsByYear W31363652532021 @default.
- W3136365253 crossrefType "book-chapter" @default.
- W3136365253 hasAuthorship W3136365253A5004038472 @default.
- W3136365253 hasAuthorship W3136365253A5012074055 @default.
- W3136365253 hasAuthorship W3136365253A5019743161 @default.
- W3136365253 hasConcept C119857082 @default.
- W3136365253 hasConcept C12267149 @default.
- W3136365253 hasConcept C153180895 @default.
- W3136365253 hasConcept C154945302 @default.
- W3136365253 hasConcept C27438332 @default.
- W3136365253 hasConcept C33923547 @default.
- W3136365253 hasConcept C41008148 @default.
- W3136365253 hasConcept C69738355 @default.
- W3136365253 hasConcept C70518039 @default.
- W3136365253 hasConcept C84525736 @default.
- W3136365253 hasConcept C95623464 @default.
- W3136365253 hasConceptScore W3136365253C119857082 @default.
- W3136365253 hasConceptScore W3136365253C12267149 @default.
- W3136365253 hasConceptScore W3136365253C153180895 @default.
- W3136365253 hasConceptScore W3136365253C154945302 @default.
- W3136365253 hasConceptScore W3136365253C27438332 @default.
- W3136365253 hasConceptScore W3136365253C33923547 @default.
- W3136365253 hasConceptScore W3136365253C41008148 @default.
- W3136365253 hasConceptScore W3136365253C69738355 @default.
- W3136365253 hasConceptScore W3136365253C70518039 @default.
- W3136365253 hasConceptScore W3136365253C84525736 @default.
- W3136365253 hasConceptScore W3136365253C95623464 @default.
- W3136365253 hasLocation W31363652531 @default.
- W3136365253 hasOpenAccess W3136365253 @default.
- W3136365253 hasPrimaryLocation W31363652531 @default.
- W3136365253 hasRelatedWork W11512698 @default.
- W3136365253 hasRelatedWork W13275467 @default.
- W3136365253 hasRelatedWork W13435860 @default.
- W3136365253 hasRelatedWork W2582698 @default.
- W3136365253 hasRelatedWork W3092890 @default.
- W3136365253 hasRelatedWork W4947539 @default.
- W3136365253 hasRelatedWork W6229082 @default.
- W3136365253 hasRelatedWork W6494939 @default.
- W3136365253 hasRelatedWork W6717794 @default.
- W3136365253 hasRelatedWork W9952751 @default.
- W3136365253 isParatext "false" @default.
- W3136365253 isRetracted "false" @default.
- W3136365253 magId "3136365253" @default.
- W3136365253 workType "book-chapter" @default.