Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136372534> ?p ?o ?g. }
- W3136372534 abstract "The accelerated use of Artificial Neural Networks (ANNs) in Chemical and Process Engineering has drawn the attention of scientific and industrial communities, mainly due to the Big Data boom related to the analysis and interpretation of large data volumes required by Industry 4.0. ANNs are well-known nonlinear regression algorithms in the Machine Learning field for classification and prediction and are based on the human brain behavior, which learns tasks from experience through interconnected neurons. This empirical method can widely replace traditional complex phenomenological models based on nonlinear conservation equations, leading to a smaller computational effort – a very peculiar feature for its use in process optimization and control. Thereby, this chapter aims to exhibit several ANN modeling applications to different Chemical and Process Engineering areas, such as thermodynamics, kinetics and catalysis, process analysis and optimization, process safety and control, among others. This review study shows the increasing use of ANNs in the area, helping to understand and to explore process data aspects for future research." @default.
- W3136372534 created "2021-03-29" @default.
- W3136372534 creator A5015012927 @default.
- W3136372534 creator A5066581285 @default.
- W3136372534 creator A5073860852 @default.
- W3136372534 creator A5080228183 @default.
- W3136372534 date "2021-07-14" @default.
- W3136372534 modified "2023-10-16" @default.
- W3136372534 title "Application of Artificial Neural Networks to Chemical and Process Engineering" @default.
- W3136372534 cites W102043801 @default.
- W3136372534 cites W1971945842 @default.
- W3136372534 cites W1977814896 @default.
- W3136372534 cites W1980326152 @default.
- W3136372534 cites W1986220812 @default.
- W3136372534 cites W2014294280 @default.
- W3136372534 cites W2029856973 @default.
- W3136372534 cites W2029938320 @default.
- W3136372534 cites W2037408629 @default.
- W3136372534 cites W2040578503 @default.
- W3136372534 cites W2043606981 @default.
- W3136372534 cites W2044940438 @default.
- W3136372534 cites W2045759556 @default.
- W3136372534 cites W2050757970 @default.
- W3136372534 cites W2057753856 @default.
- W3136372534 cites W2067470517 @default.
- W3136372534 cites W2079335151 @default.
- W3136372534 cites W2091772898 @default.
- W3136372534 cites W2091808617 @default.
- W3136372534 cites W2095510466 @default.
- W3136372534 cites W2100284628 @default.
- W3136372534 cites W2115755783 @default.
- W3136372534 cites W2123137684 @default.
- W3136372534 cites W2137983211 @default.
- W3136372534 cites W2141344416 @default.
- W3136372534 cites W2142238647 @default.
- W3136372534 cites W2323062365 @default.
- W3136372534 cites W2344264341 @default.
- W3136372534 cites W2492101910 @default.
- W3136372534 cites W2781457005 @default.
- W3136372534 cites W2889880422 @default.
- W3136372534 cites W2896210167 @default.
- W3136372534 cites W2903010511 @default.
- W3136372534 cites W2905678714 @default.
- W3136372534 cites W2910025884 @default.
- W3136372534 cites W2910388551 @default.
- W3136372534 cites W2918718121 @default.
- W3136372534 cites W2921002871 @default.
- W3136372534 cites W2976098773 @default.
- W3136372534 cites W2983128731 @default.
- W3136372534 cites W2984871496 @default.
- W3136372534 cites W2990820905 @default.
- W3136372534 cites W2995524811 @default.
- W3136372534 cites W3000215758 @default.
- W3136372534 cites W3006003209 @default.
- W3136372534 cites W3009918664 @default.
- W3136372534 cites W3010155039 @default.
- W3136372534 cites W3015977716 @default.
- W3136372534 cites W3017377196 @default.
- W3136372534 cites W3033168690 @default.
- W3136372534 cites W3033630496 @default.
- W3136372534 cites W3033724290 @default.
- W3136372534 cites W3043479795 @default.
- W3136372534 cites W3044724994 @default.
- W3136372534 cites W3046003844 @default.
- W3136372534 cites W3099314753 @default.
- W3136372534 cites W3106912571 @default.
- W3136372534 cites W3118801349 @default.
- W3136372534 cites W3124059391 @default.
- W3136372534 cites W3125308382 @default.
- W3136372534 cites W4230496004 @default.
- W3136372534 doi "https://doi.org/10.5772/intechopen.96641" @default.
- W3136372534 hasPublicationYear "2021" @default.
- W3136372534 type Work @default.
- W3136372534 sameAs 3136372534 @default.
- W3136372534 citedByCount "5" @default.
- W3136372534 countsByYear W31363725342021 @default.
- W3136372534 countsByYear W31363725342022 @default.
- W3136372534 countsByYear W31363725342023 @default.
- W3136372534 crossrefType "book-chapter" @default.
- W3136372534 hasAuthorship W3136372534A5015012927 @default.
- W3136372534 hasAuthorship W3136372534A5066581285 @default.
- W3136372534 hasAuthorship W3136372534A5073860852 @default.
- W3136372534 hasAuthorship W3136372534A5080228183 @default.
- W3136372534 hasBestOaLocation W31363725341 @default.
- W3136372534 hasConcept C111919701 @default.
- W3136372534 hasConcept C115952470 @default.
- W3136372534 hasConcept C119857082 @default.
- W3136372534 hasConcept C121332964 @default.
- W3136372534 hasConcept C127413603 @default.
- W3136372534 hasConcept C13736549 @default.
- W3136372534 hasConcept C138885662 @default.
- W3136372534 hasConcept C154945302 @default.
- W3136372534 hasConcept C158622935 @default.
- W3136372534 hasConcept C202444582 @default.
- W3136372534 hasConcept C2776401178 @default.
- W3136372534 hasConcept C33923547 @default.
- W3136372534 hasConcept C41008148 @default.
- W3136372534 hasConcept C41895202 @default.
- W3136372534 hasConcept C50644808 @default.
- W3136372534 hasConcept C62520636 @default.