Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136374560> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3136374560 endingPage "103717" @default.
- W3136374560 startingPage "103717" @default.
- W3136374560 abstract "At present, chemical analysis is the main method for copper ore grade verification. Because of its long test cycle and lag effect relative to mining and ore blending processes, this approach cannot effectively reduce losses in mineral resource mining. An effective way to solve this problem is to conduct research on in situ grade determination methods for ore bodies based on visible-near-infrared hyperspectral grade modelling techniques. However, the accuracy of the modelling is seriously reduced by the large redundancy of hyperspectral data and the self-limiting nature of some machine learning methods. Therefore, the accurate selection of dimensionality reduction algorithms and machine learning algorithms determines the accuracy of the inverse model, and the setting of parameters such as dimensionality reduction, number of nearest neighbour points and number of hidden layers in neural networks is crucial. In this paper, 190 ore samples were collected from the open pit of the Derni copper deposit in Dawu town, Guoluo Tibetan Autonomous Prefecture, Qinghai Province, China. First, the visible-near-infrared spectral data for the sample set were obtained with an SVC HR-1024 spectrometer. The copper grade of the sample set was verified by chemical analysis. Three algorithms—the Laplacian eigenmap (LE), local tangent space alignment (LTSA) and local linear embedding (LLE)—were used to reduce the dimensionality of the original hyperspectral data. The original data and the three hyperspectral datasets after dimensionality reduction were used as data sources. Several Derni copper grade inversion models based on two machine learning algorithms, the backpropagation neural network and radial basis function (RBF) neural network, were developed. Finally, the coefficient of determination (R2), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the accuracy of each model. The results show that the accuracy of the model built with spectral data processed by the dimension reduction algorithm is higher than that of the model constructed with the original spectral data. Among the above combined models, the LLE-RBF model has the highest inversion accuracy. The MAE of the model is 0.117%, the RMSE is 0.136, and R2 is 0.934." @default.
- W3136374560 created "2021-03-29" @default.
- W3136374560 creator A5000993952 @default.
- W3136374560 creator A5010552137 @default.
- W3136374560 creator A5019088621 @default.
- W3136374560 creator A5036673861 @default.
- W3136374560 creator A5068871983 @default.
- W3136374560 creator A5079051891 @default.
- W3136374560 date "2021-06-01" @default.
- W3136374560 modified "2023-09-27" @default.
- W3136374560 title "Visible-NIR spectral characterization and grade inversion modelling study of the Derni copper deposit" @default.
- W3136374560 cites W2007700211 @default.
- W3136374560 cites W2013290860 @default.
- W3136374560 cites W2028366365 @default.
- W3136374560 cites W2097308346 @default.
- W3136374560 cites W2099811277 @default.
- W3136374560 cites W2218707633 @default.
- W3136374560 cites W2335344567 @default.
- W3136374560 cites W2739393620 @default.
- W3136374560 cites W2774397624 @default.
- W3136374560 cites W2794272012 @default.
- W3136374560 cites W2889517076 @default.
- W3136374560 cites W2945020384 @default.
- W3136374560 cites W2948548092 @default.
- W3136374560 cites W2990474178 @default.
- W3136374560 cites W3009366540 @default.
- W3136374560 cites W3016808840 @default.
- W3136374560 cites W3044360060 @default.
- W3136374560 doi "https://doi.org/10.1016/j.infrared.2021.103717" @default.
- W3136374560 hasPublicationYear "2021" @default.
- W3136374560 type Work @default.
- W3136374560 sameAs 3136374560 @default.
- W3136374560 citedByCount "2" @default.
- W3136374560 countsByYear W31363745602022 @default.
- W3136374560 crossrefType "journal-article" @default.
- W3136374560 hasAuthorship W3136374560A5000993952 @default.
- W3136374560 hasAuthorship W3136374560A5010552137 @default.
- W3136374560 hasAuthorship W3136374560A5019088621 @default.
- W3136374560 hasAuthorship W3136374560A5036673861 @default.
- W3136374560 hasAuthorship W3136374560A5068871983 @default.
- W3136374560 hasAuthorship W3136374560A5079051891 @default.
- W3136374560 hasConcept C111030470 @default.
- W3136374560 hasConcept C11413529 @default.
- W3136374560 hasConcept C124101348 @default.
- W3136374560 hasConcept C151876577 @default.
- W3136374560 hasConcept C153180895 @default.
- W3136374560 hasConcept C154945302 @default.
- W3136374560 hasConcept C159078339 @default.
- W3136374560 hasConcept C41008148 @default.
- W3136374560 hasConcept C50644808 @default.
- W3136374560 hasConcept C70518039 @default.
- W3136374560 hasConceptScore W3136374560C111030470 @default.
- W3136374560 hasConceptScore W3136374560C11413529 @default.
- W3136374560 hasConceptScore W3136374560C124101348 @default.
- W3136374560 hasConceptScore W3136374560C151876577 @default.
- W3136374560 hasConceptScore W3136374560C153180895 @default.
- W3136374560 hasConceptScore W3136374560C154945302 @default.
- W3136374560 hasConceptScore W3136374560C159078339 @default.
- W3136374560 hasConceptScore W3136374560C41008148 @default.
- W3136374560 hasConceptScore W3136374560C50644808 @default.
- W3136374560 hasConceptScore W3136374560C70518039 @default.
- W3136374560 hasFunder F4320321001 @default.
- W3136374560 hasLocation W31363745601 @default.
- W3136374560 hasOpenAccess W3136374560 @default.
- W3136374560 hasPrimaryLocation W31363745601 @default.
- W3136374560 hasRelatedWork W198500362 @default.
- W3136374560 hasRelatedWork W2010514871 @default.
- W3136374560 hasRelatedWork W2010679820 @default.
- W3136374560 hasRelatedWork W2031007444 @default.
- W3136374560 hasRelatedWork W2166963679 @default.
- W3136374560 hasRelatedWork W2389223724 @default.
- W3136374560 hasRelatedWork W3018841469 @default.
- W3136374560 hasRelatedWork W3154145980 @default.
- W3136374560 hasRelatedWork W3211035526 @default.
- W3136374560 hasRelatedWork W4240683824 @default.
- W3136374560 hasVolume "115" @default.
- W3136374560 isParatext "false" @default.
- W3136374560 isRetracted "false" @default.
- W3136374560 magId "3136374560" @default.
- W3136374560 workType "article" @default.