Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136378322> ?p ?o ?g. }
- W3136378322 endingPage "15918" @default.
- W3136378322 startingPage "15906" @default.
- W3136378322 abstract "The rapid geographic spread of COVID-19, to which various factors may have contributed, has caused a global health crisis. Recently, the analysis and forecast of the COVID-19 pandemic have attracted worldwide attention. In this work, a large COVID-19 data set consisting of COVID-19 pandemic, COVID-19 testing capacity, economic level, demographic information, and geographic location data in 184 countries and 1241 areas from December 18, 2019, to September 30, 2020, were developed from public reports released by national health authorities and bureau of statistics. We proposed a machine learning model for COVID-19 prediction based on the broad learning system (BLS). Here, we leveraged random forest (RF) to screen out the key features. Then, we combine the bagging strategy and BLS to develop a random-forest-bagging BLS (RF-Bagging-BLS) approach to forecast the trend of the COVID-19 pandemic. In addition, we compared the forecasting results with linear regression (LR) model, [Formula: see text]-nearest neighbors (KNN), decision tree (DT), adaptive boosting (Ada), RF, gradient boosting DT (GBDT), support vector regression (SVR), extra trees (ETs) regressor, CatBoost (CAT), LightGBM (LGB), XGBoost (XGB), and BLS.The RF-Bagging BLS model showed better forecasting performance in terms of relative mean-square error (RMSE), coefficient of determination ([Formula: see text]), adjusted coefficient of determination ([Formula: see text]), median absolute error (MAD), and mean absolute percentage error (MAPE) than other models. Hence, the proposed model demonstrates superior predictive power over other benchmark models." @default.
- W3136378322 created "2021-03-29" @default.
- W3136378322 creator A5043260804 @default.
- W3136378322 creator A5054304362 @default.
- W3136378322 creator A5064571154 @default.
- W3136378322 creator A5088291390 @default.
- W3136378322 date "2021-11-01" @default.
- W3136378322 modified "2023-10-17" @default.
- W3136378322 title "Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic" @default.
- W3136378322 cites W1996031526 @default.
- W3136378322 cites W2068181924 @default.
- W3136378322 cites W2153232138 @default.
- W3136378322 cites W2560103205 @default.
- W3136378322 cites W2738226240 @default.
- W3136378322 cites W2887576641 @default.
- W3136378322 cites W2890706287 @default.
- W3136378322 cites W2895939936 @default.
- W3136378322 cites W2911964244 @default.
- W3136378322 cites W2952534036 @default.
- W3136378322 cites W2993548219 @default.
- W3136378322 cites W2996634087 @default.
- W3136378322 cites W3004239190 @default.
- W3136378322 cites W3007473125 @default.
- W3136378322 cites W3008294222 @default.
- W3136378322 cites W3008696669 @default.
- W3136378322 cites W3009333463 @default.
- W3136378322 cites W3009876049 @default.
- W3136378322 cites W3011771926 @default.
- W3136378322 cites W3012320055 @default.
- W3136378322 cites W3012584946 @default.
- W3136378322 cites W3012789146 @default.
- W3136378322 cites W3012994592 @default.
- W3136378322 cites W3013152614 @default.
- W3136378322 cites W3013758358 @default.
- W3136378322 cites W3013893137 @default.
- W3136378322 cites W3014687595 @default.
- W3136378322 cites W3015571324 @default.
- W3136378322 cites W3016038616 @default.
- W3136378322 cites W3016578013 @default.
- W3136378322 cites W3016966855 @default.
- W3136378322 cites W3017267196 @default.
- W3136378322 cites W3017274437 @default.
- W3136378322 cites W3020041202 @default.
- W3136378322 cites W3020514163 @default.
- W3136378322 cites W3021303430 @default.
- W3136378322 cites W3021693646 @default.
- W3136378322 cites W3022163878 @default.
- W3136378322 cites W3022206779 @default.
- W3136378322 cites W3022230719 @default.
- W3136378322 cites W3022714712 @default.
- W3136378322 cites W3022787740 @default.
- W3136378322 cites W3025394897 @default.
- W3136378322 cites W3025452085 @default.
- W3136378322 cites W3025654679 @default.
- W3136378322 cites W3027374032 @default.
- W3136378322 cites W3027560633 @default.
- W3136378322 cites W3035706118 @default.
- W3136378322 cites W3037217652 @default.
- W3136378322 cites W3038780555 @default.
- W3136378322 cites W3038987585 @default.
- W3136378322 cites W3039163263 @default.
- W3136378322 cites W3039225830 @default.
- W3136378322 cites W3043119625 @default.
- W3136378322 cites W3045248985 @default.
- W3136378322 cites W3046127806 @default.
- W3136378322 cites W3046218112 @default.
- W3136378322 cites W3046850558 @default.
- W3136378322 cites W3048190739 @default.
- W3136378322 cites W3048613321 @default.
- W3136378322 cites W3049002082 @default.
- W3136378322 cites W3049732719 @default.
- W3136378322 cites W3081243974 @default.
- W3136378322 cites W3083338576 @default.
- W3136378322 cites W3092055951 @default.
- W3136378322 cites W3108479920 @default.
- W3136378322 cites W3109134392 @default.
- W3136378322 cites W3116067625 @default.
- W3136378322 cites W3122638632 @default.
- W3136378322 cites W4212883601 @default.
- W3136378322 cites W4245055982 @default.
- W3136378322 cites W4255455317 @default.
- W3136378322 cites W607853484 @default.
- W3136378322 doi "https://doi.org/10.1109/jiot.2021.3066575" @default.
- W3136378322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35582242" @default.
- W3136378322 hasPublicationYear "2021" @default.
- W3136378322 type Work @default.
- W3136378322 sameAs 3136378322 @default.
- W3136378322 citedByCount "34" @default.
- W3136378322 countsByYear W31363783222021 @default.
- W3136378322 countsByYear W31363783222022 @default.
- W3136378322 countsByYear W31363783222023 @default.
- W3136378322 crossrefType "journal-article" @default.
- W3136378322 hasAuthorship W3136378322A5043260804 @default.
- W3136378322 hasAuthorship W3136378322A5054304362 @default.
- W3136378322 hasAuthorship W3136378322A5064571154 @default.
- W3136378322 hasAuthorship W3136378322A5088291390 @default.
- W3136378322 hasBestOaLocation W31363783221 @default.
- W3136378322 hasConcept C105795698 @default.