Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136381513> ?p ?o ?g. }
- W3136381513 abstract "This paper presents an approach for the integrated process of classification and instance segmentation of leakage-area and scaling images from shield tunnel linings. For this purpose, the previously established dataset of leakage-area images by the authors is enlarged by means of adding scaling ones. Afterwards, data augmentation is implemented to enrich the database in the classification dataset, and the augmented classification dataset contains 5776 images. The instance segmentation dataset is subsequently enlarged through original images without any data augmentation, including 1496 images. Then a residual net with 101 layers (i.e., ResNet-101) is applied to the classification dataset to obtain a model that can identify leakage-area and scaling images from those of shield tunnel linings. The ResNet-101 classification model achieves an accuracy of 93.37% in terms of testing classification dataset. Moreover, a mask region-based convolutional neural network (Mask R-CNN) is utilized to perform instance segmentation of leakage areas and scaling in the images classified by the ResNet-101 model. The segmentation results of the Mask R-CNN model show 96.1% and 95.6% average precision (AP) with intersection over union (IoU) of 0.5 for bounding box and mask predication, respectively. By using the proposed approach, the leakage-area and scaling defects can be automatically classified and quantified with an overall accuracy of 89.3%, which is quite promising compared to the inherent uncertainty in geotechnical engineering. Image mosaicing is finally applied to provide inspectors with the intuitive observation of the location and distribution information of defects on the tunnel lining." @default.
- W3136381513 created "2021-03-29" @default.
- W3136381513 creator A5014112610 @default.
- W3136381513 creator A5027439076 @default.
- W3136381513 creator A5027707501 @default.
- W3136381513 creator A5076032574 @default.
- W3136381513 creator A5087938607 @default.
- W3136381513 date "2021-03-21" @default.
- W3136381513 modified "2023-10-14" @default.
- W3136381513 title "Deep learning‐based classification and instance segmentation of leakage‐area and scaling images of shield tunnel linings" @default.
- W3136381513 cites W1542901595 @default.
- W3136381513 cites W1850143338 @default.
- W3136381513 cites W1903029394 @default.
- W3136381513 cites W1985676512 @default.
- W3136381513 cites W2025853323 @default.
- W3136381513 cites W2089873056 @default.
- W3136381513 cites W2093193324 @default.
- W3136381513 cites W2137160061 @default.
- W3136381513 cites W2194775991 @default.
- W3136381513 cites W2264548594 @default.
- W3136381513 cites W239591682 @default.
- W3136381513 cites W2512597962 @default.
- W3136381513 cites W2597068387 @default.
- W3136381513 cites W2598457882 @default.
- W3136381513 cites W2625840022 @default.
- W3136381513 cites W2674352656 @default.
- W3136381513 cites W2748643398 @default.
- W3136381513 cites W2769647444 @default.
- W3136381513 cites W2791045962 @default.
- W3136381513 cites W2796506861 @default.
- W3136381513 cites W2799281418 @default.
- W3136381513 cites W2801439730 @default.
- W3136381513 cites W2801492038 @default.
- W3136381513 cites W2807701216 @default.
- W3136381513 cites W2862109938 @default.
- W3136381513 cites W2889494142 @default.
- W3136381513 cites W2896613037 @default.
- W3136381513 cites W2899144041 @default.
- W3136381513 cites W2901906265 @default.
- W3136381513 cites W2902164950 @default.
- W3136381513 cites W2943613273 @default.
- W3136381513 cites W2962509684 @default.
- W3136381513 cites W2963150697 @default.
- W3136381513 cites W2963857746 @default.
- W3136381513 cites W2964350391 @default.
- W3136381513 cites W2966167487 @default.
- W3136381513 cites W2981340875 @default.
- W3136381513 cites W3001763773 @default.
- W3136381513 cites W3011200270 @default.
- W3136381513 cites W3095812427 @default.
- W3136381513 cites W3109013557 @default.
- W3136381513 cites W639708223 @default.
- W3136381513 doi "https://doi.org/10.1002/stc.2732" @default.
- W3136381513 hasPublicationYear "2021" @default.
- W3136381513 type Work @default.
- W3136381513 sameAs 3136381513 @default.
- W3136381513 citedByCount "24" @default.
- W3136381513 countsByYear W31363815132021 @default.
- W3136381513 countsByYear W31363815132022 @default.
- W3136381513 countsByYear W31363815132023 @default.
- W3136381513 crossrefType "journal-article" @default.
- W3136381513 hasAuthorship W3136381513A5014112610 @default.
- W3136381513 hasAuthorship W3136381513A5027439076 @default.
- W3136381513 hasAuthorship W3136381513A5027707501 @default.
- W3136381513 hasAuthorship W3136381513A5076032574 @default.
- W3136381513 hasAuthorship W3136381513A5087938607 @default.
- W3136381513 hasBestOaLocation W31363815131 @default.
- W3136381513 hasConcept C108583219 @default.
- W3136381513 hasConcept C11413529 @default.
- W3136381513 hasConcept C115961682 @default.
- W3136381513 hasConcept C124101348 @default.
- W3136381513 hasConcept C139719470 @default.
- W3136381513 hasConcept C147037132 @default.
- W3136381513 hasConcept C153180895 @default.
- W3136381513 hasConcept C154945302 @default.
- W3136381513 hasConcept C155512373 @default.
- W3136381513 hasConcept C162324750 @default.
- W3136381513 hasConcept C2524010 @default.
- W3136381513 hasConcept C2777042071 @default.
- W3136381513 hasConcept C2944601119 @default.
- W3136381513 hasConcept C31972630 @default.
- W3136381513 hasConcept C33923547 @default.
- W3136381513 hasConcept C41008148 @default.
- W3136381513 hasConcept C75294576 @default.
- W3136381513 hasConcept C81363708 @default.
- W3136381513 hasConcept C89600930 @default.
- W3136381513 hasConcept C99844830 @default.
- W3136381513 hasConceptScore W3136381513C108583219 @default.
- W3136381513 hasConceptScore W3136381513C11413529 @default.
- W3136381513 hasConceptScore W3136381513C115961682 @default.
- W3136381513 hasConceptScore W3136381513C124101348 @default.
- W3136381513 hasConceptScore W3136381513C139719470 @default.
- W3136381513 hasConceptScore W3136381513C147037132 @default.
- W3136381513 hasConceptScore W3136381513C153180895 @default.
- W3136381513 hasConceptScore W3136381513C154945302 @default.
- W3136381513 hasConceptScore W3136381513C155512373 @default.
- W3136381513 hasConceptScore W3136381513C162324750 @default.
- W3136381513 hasConceptScore W3136381513C2524010 @default.
- W3136381513 hasConceptScore W3136381513C2777042071 @default.
- W3136381513 hasConceptScore W3136381513C2944601119 @default.